Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=i^3j^+7k^,b=2i^j^+k^,andc be a vector such that\vec{a} = \hat{i} - 3\hat{j} + 7\hat{k}, \quad \vec{b} = 2\hat{i} - \hat{j} + \hat{k}, \quad \text{and} \quad \vec{c} \text{ be a vector such that} (a+2b)×c=3(c×a).(\vec{a} + 2\vec{b}) \times \vec{c} = 3(\vec{c} \times \vec{a}).
If ac=130\vec{a} \cdot \vec{c} = 130, then bc\vec{b} \cdot \vec{c} is equal to \\_\\_\\_\\_\\_\\_\\_\\_ .

Answer

Given:

(a+2b)×c=3(c×a)(\vec{a} + 2\vec{b}) \times \vec{c} = 3(\vec{c} \times \vec{a})

This implies:

2b×c=0(since cross product is zero)2\vec{b} \times \vec{c} = 0 \quad (\text{since cross product is zero})

Also:

c=λ(a+2b)=λ(8i^14j^+30k^)\vec{c} = \lambda (\vec{a} + 2\vec{b}) = \lambda (8\hat{i} - 14\hat{j} + 30\hat{k})

Given:

ac=130\vec{a} \cdot \vec{c} = 130

Substitute values:

8λ+42λ+210λ=130    λ=128\lambda + 42\lambda + 210\lambda = 130 \quad \implies \quad \lambda = \frac{1}{2}

Therefore:

c=4i^7j^+15k^\vec{c} = 4\hat{i} - 7\hat{j} + 15\hat{k}

Now:

bc=8+7+15=30\vec{b} \cdot \vec{c} = 8 + 7 + 15 = 30