Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=i^2j^+k^\vec{a}=\hat{i}-2\,\hat{j}+\hat{k} and b=i^j^+k^\vec{b}=\hat{i}-\hat{j}+\hat{k} be two vectors. If c\vec{c} is a vector such that b×c=b×a\vec{b}\times\vec{c}=\vec{b}\times\vec{a} and ca=0,\vec{c}\cdot\vec{a}=0, then cb\vec{c} \cdot \vec{b} is equal to :

A

12\frac{1}{2}

B

32- \frac{3}{2}

C

12- \frac{1}{2}

D

1-1

Answer

12- \frac{1}{2}

Explanation

Solution

b×cb×a=0\vec{b}\times\vec{c}-\vec{b}\times\vec{a} = \vec{0}
b×(ca)=0\vec{b}\times \left(\vec{c}- \vec{a}\right) = \vec{0}
b=λ(ca)...(i)\vec{b} = \lambda\left(\vec{c}- \vec{a}\right) \quad...\left(i\right)
ab=λ(aca2)\vec{a}\cdot \vec{b} = \lambda\left( \vec{a}\cdot \vec{c}- \vec{a}^{2}\right)
4=λ(06)λ=46=234 = \lambda\left(0 - 6\right) \Rightarrow \lambda = \frac{-4}{6} = \frac{-2}{3}
from (i)b=23(ca)\left(i\right) \vec{b} = \frac{-2}{3}\left(\vec{c}- \vec{a}\right)
c=32b+a=12(i^+j^+k^)\vec{c} = \frac{-3}{2}\vec{b}+ \vec{a} = \frac{-1}{2}\left(\hat{i}+\hat{j}+\hat{k}\right)

bc=12\vec{b}\cdot \vec{c} = -\frac{1}{2}