Solveeit Logo

Question

Mathematics Question on Vectors

Let a=i^+2j^+k^\vec{a} = \hat{i} + 2\hat{j} + \hat{k}, b=3(i^j^+k^)\vec{b} = 3(\hat{i} - \hat{j} + \hat{k}). Let c\vec{c} be the vector such that a×c=b\vec{a} \times \vec{c} = \vec{b} and ac=3\vec{a} \cdot \vec{c} = 3. Then a((c×b)bc)\vec{a} \cdot ((\vec{c} \times \vec{b}) - \vec{b} \cdot \vec{c}) is equal to:

A

32

B

24

C

20

D

36

Answer

24

Explanation

Solution

Given vectors:
a=i+2j+k,b=3(ij+k)\vec{a} = i + 2j + k, \quad \vec{b} = 3(i - j + k)

Let c\vec{c} be a vector such that a×c=b\vec{a} \times \vec{c} = \vec{b} and ac=3\vec{a} \cdot \vec{c} = 3. We need to evaluate:

a[(c×b)bc]\vec{a} \cdot \left[ (\vec{c} \times \vec{b}) - \vec{b} - \vec{c} \right]

Step 1. Expression Simplification: Consider:

a[(c×b)bc]=a(c×b)abac...(i)\vec{a} \cdot \left[ (\vec{c} \times \vec{b}) - \vec{b} - \vec{c} \right] = \vec{a} \cdot (\vec{c} \times \vec{b}) - \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{c} \quad \text{...(i)}

Step 2. Given Conditions: It is given that:

a×c=b\vec{a} \times \vec{c} = \vec{b}

Therefore:

a(c×b)=bb=b2\vec{a} \cdot (\vec{c} \times \vec{b}) = \vec{b} \cdot \vec{b} = |\vec{b}|^2

Calculating the magnitude:

b=3(ij+k)\vec{b} = 3(i - j + k)

b2=32[(1)2+(1)2+(1)2]=27|\vec{b}|^2 = 3^2[(1)^2 + (-1)^2 + (1)^2] = 27

Thus:

a(c×b)=27...(ii)\vec{a} \cdot (\vec{c} \times \vec{b}) = 27 \quad \text{...(ii)}

Step 3. Calculating ab\vec{a} \cdot \vec{b}:

ab=(1)(3)+(2)(3)+(1)(3)=36+3=0...(iii)\vec{a} \cdot \vec{b} = (1)(3) + (2)(-3) + (1)(3) = 3 - 6 + 3 = 0 \quad \text{...(iii)}

Step 4. Given ac\vec{a} \cdot \vec{c}:

ac=3...(iv)\vec{a} \cdot \vec{c} = 3 \quad \text{...(iv)}

Step 5. Final Calculation: Substituting the values from (ii), (iii), and (iv) into (i):

a[(c×b)bc]=2703=24\vec{a} \cdot \left[ (\vec{c} \times \vec{b}) - \vec{b} - \vec{c} \right] = 27 - 0 - 3 = 24