Question
Mathematics Question on Vectors
Let a=i^+2j^+k^, b=3(i^−j^+k^). Let c be the vector such that a×c=b and a⋅c=3. Then a⋅((c×b)−b⋅c) is equal to:
A
32
B
24
C
20
D
36
Answer
24
Explanation
Solution
Given vectors:
a=i+2j+k,b=3(i−j+k)
Let c be a vector such that a×c=b and a⋅c=3. We need to evaluate:
a⋅[(c×b)−b−c]
Step 1. Expression Simplification: Consider:
a⋅[(c×b)−b−c]=a⋅(c×b)−a⋅b−a⋅c...(i)
Step 2. Given Conditions: It is given that:
a×c=b
Therefore:
a⋅(c×b)=b⋅b=∣b∣2
Calculating the magnitude:
b=3(i−j+k)
∣b∣2=32[(1)2+(−1)2+(1)2]=27
Thus:
a⋅(c×b)=27...(ii)
Step 3. Calculating a⋅b:
a⋅b=(1)(3)+(2)(−3)+(1)(3)=3−6+3=0...(iii)
Step 4. Given a⋅c:
a⋅c=3...(iv)
Step 5. Final Calculation: Substituting the values from (ii), (iii), and (iv) into (i):
a⋅[(c×b)−b−c]=27−0−3=24