Question
Mathematics Question on Vectors
Let a=i^+2j^+3k^, b=2i^+3j^−5k^, and c=3i^−j^+λk^ be three vectors. Let r be a unit vector along b+c. If r⋅a=3, then 3λ is equal to:
27
25
25
21
25
Solution
Given vectors:
a=i^+2j^+3k^,b=2i^+3j^−5k^,c=3i^−j^+λk^.
The sum of vectors b+c is given by:
b+c=(2i^+3j^−5k^)+(3i^−j^+λk^)=(5i^+2j^+(λ−5)k^). The magnitude of b+c is: ∣b+c∣=52+22+(λ−5)2=25+4+(λ−5)2.
Simplifying:
∣b+c∣=29+(λ−5)2.
The unit vector along b+c is:
r=∣b+c∣b+c=29+(λ−5)25i^+2j^+(λ−5)k^. Given that r⋅a=3,
we have: 29+(λ−5)21(5⋅1+2⋅2+3⋅(λ−5))=3.
Simplifying:
29+(λ−5)21(5+4+3λ−15)=3.
29+(λ−5)23λ−6=3.
Cross-multiplying:
λ−2=29+(λ−5)2.
Squaring both sides:
(λ−2)2=29+(λ−5)2.
Expanding both sides:
λ2−4λ+4=29+λ2−10λ+25. Simplifying:
−4λ+4=54−10λ.
Rearranging terms:
6λ=50⟹λ=650=325.
Thus:
3λ=3×325=25. Therefore:
25.