Solveeit Logo

Question

Mathematics Question on Vectors

Let a=i^+2j^+3k^\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}, b=2i^+3j^5k^\vec{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}, and c=3i^j^+λk^\vec{c} = 3\hat{i} - \hat{j} + \lambda\hat{k} be three vectors. Let r\vec{r} be a unit vector along b+c\vec{b} + \vec{c}. If ra=3\vec{r} \cdot \vec{a} = 3, then 3λ3\lambda is equal to:

A

27

B

25

C

25

D

21

Answer

25

Explanation

Solution

Given vectors:

a=i^+2j^+3k^,b=2i^+3j^5k^,c=3i^j^+λk^.\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}, \quad \vec{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}, \quad \vec{c} = 3\hat{i} - \hat{j} + \lambda \hat{k}.

The sum of vectors b+c\vec{b} + \vec{c} is given by:

b+c=(2i^+3j^5k^)+(3i^j^+λk^)=(5i^+2j^+(λ5)k^).\vec{b} + \vec{c} = (2\hat{i} + 3\hat{j} - 5\hat{k}) + (3\hat{i} - \hat{j} + \lambda \hat{k}) = (5\hat{i} + 2\hat{j} + (\lambda - 5)\hat{k}). The magnitude of b+c\vec{b} + \vec{c} is: b+c=52+22+(λ5)2=25+4+(λ5)2.|\vec{b} + \vec{c}| = \sqrt{5^2 + 2^2 + (\lambda - 5)^2} = \sqrt{25 + 4 + (\lambda - 5)^2}.

Simplifying:

b+c=29+(λ5)2.|\vec{b} + \vec{c}| = \sqrt{29 + (\lambda - 5)^2}.

The unit vector along b+c\vec{b} + \vec{c} is:

r=b+cb+c=5i^+2j^+(λ5)k^29+(λ5)2.\vec{r} = \frac{\vec{b} + \vec{c}}{|\vec{b} + \vec{c}|} = \frac{5\hat{i} + 2\hat{j} + (\lambda - 5)\hat{k}}{\sqrt{29 + (\lambda - 5)^2}}. Given that ra=3\vec{r} \cdot \vec{a} = 3,

we have: 129+(λ5)2(51+22+3(λ5))=3.\frac{1}{\sqrt{29 + (\lambda - 5)^2}} (5 \cdot 1 + 2 \cdot 2 + 3 \cdot (\lambda - 5)) = 3.

Simplifying:
129+(λ5)2(5+4+3λ15)=3.\frac{1}{\sqrt{29 + (\lambda - 5)^2}} (5 + 4 + 3\lambda - 15) = 3.
3λ629+(λ5)2=3.\frac{3\lambda - 6}{\sqrt{29 + (\lambda - 5)^2}} = 3.

Cross-multiplying:
λ2=29+(λ5)2.\lambda - 2 = \sqrt{29 + (\lambda - 5)^2}.

Squaring both sides:
(λ2)2=29+(λ5)2.(\lambda - 2)^2 = 29 + (\lambda - 5)^2.

Expanding both sides:
λ24λ+4=29+λ210λ+25.\lambda^2 - 4\lambda + 4 = 29 + \lambda^2 - 10\lambda + 25. Simplifying:
4λ+4=5410λ.-4\lambda + 4 = 54 - 10\lambda.

Rearranging terms:
6λ=50    λ=506=253.6\lambda = 50 \implies \lambda = \frac{50}{6} = \frac{25}{3}.

Thus:
3λ=3×253=25.3\lambda = 3 \times \frac{25}{3} = 25. Therefore:
25.25.