Solveeit Logo

Question

Question: Let $\vec a = \hat i - \hat j$, $\vec b = \hat i + \hat j + \hat k$ and $\vec c$ be a vector such th...

Let a=i^j^\vec a = \hat i - \hat j, b=i^+j^+k^\vec b = \hat i + \hat j + \hat k and c\vec c be a vector such that a×c+b=0\vec a \times \vec c + \vec b = \vec 0 and ac=4\vec a \cdot \vec c = 4, then c2{\left| {\vec c} \right|^2} is equal to

Answer

19/2

Explanation

Solution

Given the vector equation a×c+b=0\vec a \times \vec c + \vec b = \vec 0, we can rewrite it as a×c=b\vec a \times \vec c = -\vec b. Taking the magnitude squared of both sides, we get a×c2=b2=b2|\vec a \times \vec c|^2 = |-\vec b|^2 = |\vec b|^2. Using the vector identity a×c2=a2c2(ac)2|\vec a \times \vec c|^2 = |\vec a|^2 |\vec c|^2 - (\vec a \cdot \vec c)^2, we substitute this into the equation: a2c2(ac)2=b2|\vec a|^2 |\vec c|^2 - (\vec a \cdot \vec c)^2 = |\vec b|^2.

We are given a=i^j^\vec a = \hat i - \hat j, so its squared magnitude is a2=(1)2+(1)2+(0)2=1+1=2|\vec a|^2 = (1)^2 + (-1)^2 + (0)^2 = 1 + 1 = 2. We are given b=i^+j^+k^\vec b = \hat i + \hat j + \hat k, so its squared magnitude is b2=(1)2+(1)2+(1)2=1+1+1=3|\vec b|^2 = (1)^2 + (1)^2 + (1)^2 = 1 + 1 + 1 = 3. We are also given that ac=4\vec a \cdot \vec c = 4.

Substitute these values into the equation: 2c2(4)2=32 |\vec c|^2 - (4)^2 = 3 2c216=32 |\vec c|^2 - 16 = 3 2c2=192 |\vec c|^2 = 19 c2=192|\vec c|^2 = \frac{19}{2}.