Solveeit Logo

Question

Mathematics Question on types of vectors

Let
a\vec{a} and b\vec{b} be two vectors such that
a+b2=a2+2b2, ab=3|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2|\vec{b}|^2,\ \vec{a} \cdot \vec{b} = 3 and a×b2=75|\vec{a} \times \vec{b}|^2 = 75
Then a2|\vec{a}|^2 is equal to _____.

Answer

a+b2=a2+2b2\because |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2|\vec{b}|^2
or a2+b2+2ab=a2+2b2|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{a}|^2 + 2|\vec{b}|^2
b2=6(i)∴ |\vec{b}|^2=6 …(i)
Now,a×b2=a2b2(ab)2|\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - \left(\vec{a} \cdot \vec{b}\right)^2
75=a26975=|\vec{a}|^2⋅6−9
a2=14∴ |\vec{a}|^2=14
So, the correct answer is 14.