Question
Mathematics Question on types of vectors
Let
a and b be two vectors such that
∣a+b∣2=∣a∣2+2∣b∣2, a⋅b=3 and ∣a×b∣2=75
Then ∣a∣2 is equal to _____.
Answer
∵∣a+b∣2=∣a∣2+2∣b∣2
or ∣a∣2+∣b∣2+2a⋅b=∣a∣2+2∣b∣2
∴∣b∣2=6…(i)
Now,∣a×b∣2=∣a∣2∣b∣2−(a⋅b)2
75=∣a∣2⋅6−9
∴∣a∣2=14
So, the correct answer is 14.