Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a\vec{a} and b\vec{b} be two vectors such that a=1|\vec{a}| = 1, b=4|\vec{b}| = 4 and ab=2\vec{a} \cdot \vec{b} = 2.If c=(2a×b)3b\vec{c} = (2 \vec{a} \times \vec{b}) - 3 \vec{b} and the angle between b\vec{b} and c\vec{c} is α\alpha, then 192sin2α192 \sin^2 \alpha is equal to _____

Answer

Given:

bc=(2a×b)b3b2\vec{b} \cdot \vec{c} = \left( 2\vec{a} \times \vec{b} \right) \cdot \vec{b} - 3|\vec{b}|^2

We know:

bccosα=12,as b=4,  ab=2|\vec{b}||\vec{c}| \cos \alpha = -12, \quad \text{as } |\vec{b}| = 4, \; \vec{a} \cdot \vec{b} = 2

Calculate:

cosα=12,α=π3\cos \alpha = \frac{1}{2}, \quad \alpha = \frac{\pi}{3}

Now:

c2=(2a×b)3b2=64×34+144=192|\vec{c}|^2 = |(2\vec{a} \times \vec{b}) - 3\vec{b}|^2 = 64 \times \frac{3}{4} + 144 = 192

Therefore:

192cos2α=144,192sin2α=48192 \cos^2 \alpha = 144, \quad 192 \sin^2 \alpha = 48