Question
Mathematics Question on Vector Algebra
Let a and b be two vectors such that ∣b∣=1 and ∣b×a∣=2. Then (b×a)−b2 is equal to
A
3
B
5
C
1
D
4
Answer
5
Explanation
Solution
Given ∣b∣=1 and ∣b×a∣=2, we need to find ∣(b×a)−b∣2.
Expanding ∣(b×a)−b∣2 using ∣u−v∣2=∣u∣2+∣v∣2−2u×v:
∣(b×a)−b∣2=∣b×a∣2+∣b∣2−2(b×a)×b.
Since ∣b×a∣=2, we get ∣b×a∣2=4, and ∣b∣2=1.
The cross product (b×a)×b=0 because b×a is perpendicular to b.
Substituting these values:
∣(b×a)−b∣2=4+1=5.