Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a\vec{a} and b\vec{b} be two vectors such that b=1|\vec{b}| = 1 and b×a=2|\vec{b} \times \vec{a}| = 2. Then (b×a)b2\left| (\vec{b} \times \vec{a}) - \vec{b} \right|^2 is equal to

A

3

B

5

C

1

D

4

Answer

5

Explanation

Solution

Given b=1|\vec{b}| = 1 and b×a=2|\vec{b} \times \vec{a}| = 2, we need to find (b×a)b2|(\vec{b} \times \vec{a}) - \vec{b}|^2.

Expanding (b×a)b2|(\vec{b} \times \vec{a}) - \vec{b}|^2 using uv2=u2+v22u×v|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2\vec{u} \times \vec{v}:

(b×a)b2=b×a2+b22(b×a)×b.|(\vec{b} \times \vec{a}) - \vec{b}|^2 = |\vec{b} \times \vec{a}|^2 + |\vec{b}|^2 - 2(\vec{b} \times \vec{a}) \times \vec{b}.

Since b×a=2|\vec{b} \times \vec{a}| = 2, we get b×a2=4|\vec{b} \times \vec{a}|^2 = 4, and b2=1|\vec{b}|^2 = 1.

The cross product (b×a)×b=0(\vec{b} \times \vec{a}) \times \vec{b} = 0 because b×a\vec{b} \times \vec{a} is perpendicular to b\vec{b}.

Substituting these values:

(b×a)b2=4+1=5.|(\vec{b} \times \vec{a}) - \vec{b}|^2 = 4 + 1 = 5.