Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a\vec a anb b\vec b be two unit vectors and θ is the angle between them.Then,a+b\vec a+\vec b is a unit vector if

A

θ=π4\frac{\pi}{4}

B

θ=π3\frac{\pi}{3}

C

θ=π2\frac{\pi}{2}

D

θ=2π3\frac{2\pi}{3}

Answer

θ=2π3\frac{2\pi}{3}

Explanation

Solution

Let a→and b→be two unit vectors and θ be the angle between them.
Then,|a\vec a|=|b\vec b|=1
Now,a\vec a+b\vec b is a unit vector if |a+b\vec a+\vec b|=1.
|a+b\vec a+\vec b|=1
⇒(a+b\vec a+\vec b)2=1
⇒(a+b\vec a+\vec b).(a+b\vec a+\vec b)=1
a.a+b.b\vec a.\vec a+\vec b.\vec b+b.a+b.b\vec b.\vec a+\vec b.\vec b=1
⇒|a2+2a.b+b2|\vec a|^2+2\vec a.\vec b+|\vec b|^2=1
⇒1+2.1.1cosθ+1=1
⇒cosθ=12-\frac{1}{2}
⇒ θ=2π3\frac{2\pi}{3}
Hence,a+b\vec a+\vec b is a unit vector if θ=2π3\frac{2\pi}{3}
The correct answer is D.