Question
Mathematics Question on Vectors
Let
a=αi^+j^−k^ and b=2i^+j^−αk^,α>0.
If the projection of a×b on the vector −i^+2j^−2k^
is 30, then α is equal to
A
215
B
8
C
213
D
7
Answer
7
Explanation
Solution
Given: a=(α,1,−1)
and
b=(2,1,−α)
\vec{c}=\vec{a}×\vec{b}=$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\\ \alpha & 1 & -1 \\\ 2 & 1 &-\alpha \end{vmatrix}
=(−α+1)i^+(α2−2)j^+(α−2)k^
Projection of con d=−i^+2j^−2k^
=|\vec{c}⋅\frac{\vec{d}}{|d|}|=30 \left\\{ Given\right\\}
⇒=∣1+4+4α−1−4+2α2−2α+4∣=30
On solving
α=2−13
(Rejected as α> 0)
and α = 7
So, the correct option is (D): 7