Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=a1i^+a2j^+a3k^\vec a=a_1\hat i+a_2\hat j+a_3\hat k, ai>0, i=1,2,3a_i>0,\ i=1, 2, 3 be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of a\vec a on the vector 3i^+4j^3\hat i+4\hat j be 7. Let b\vec b be a vector obtained by rotating a\vec a with 90°. If a,b\vec a,\vec b and x-axis are co-planar, then projection of a vector b\vec b on 3i^+4j^3\hat i+4\hat j is equal to :

A

7\sqrt 7

B

2\sqrt 2

C

22

D

77

Answer

2\sqrt 2

Explanation

Solution

cos2α+cos2β+cos2γ=1cos^2α+cos^2β+cos^2⁡γ=1

cos2α=13cos^2⁡α=\frac 13

cos ⁡α=13⇒cos\ ⁡α=\frac {1}{\sqrt 3}

a=λ3(i^+j^+k^), λ>0\vec a=\frac {λ}{3}(\hat i+\hat j+\hat k),\ λ>0

λ3(i^+j^+k^)(3i^+4j^)32+42=7\frac {λ}{\sqrt 3}\frac {(\hat i+\hat j+\hat k)⋅(3\hat i+4\hat j)}{\sqrt {3^2+4^2}}=7

λ3(3+4)=7×5⇒\frac {λ}{\sqrt 3}(3+4)=7×5

λ=53λ=5\sqrt 3

a=5(i^+j^+k^)\vec a=5(\hat i+\hat j+\hat k)
Let
b=pi^+qj^+rk^\vec b=p\hat i+q\hat j+r\hat k
ab=0\vec a⋅\vec b=0 and [abi^]=0[\vec a \vec b \hat i]=0
p+q+r=0⇒ p + q + r = 0 …(i)
And
pqr 111 100=0\begin{vmatrix} p & q & r \\\ 1 & 1 & 1 \\\ 1 & 0 & 0 \end{vmatrix}=0
b=2ri^+rj^+rk^⇒\vec b=−2r\hat i+r\hat j+r\hat k
b=r(2i^+j^+k^)⇒\vec b=r(−2\hat i+\hat j+\hat k)
Now
a=b|\vec a|=|\vec b|
53=rb5\sqrt 3=|r|\sqrt b
r=52|r|=5\sqrt 2
Projection of b\vec b on 3i^+4j^3\hat i+4\hat j
= b(3i^+4j^)32+42|\frac {\vec b⋅(3\hat i+4\hat j)}{\sqrt {3^2+4^2}}|

=r(6+4)5|r|\frac {(−6+4)}{5}

=25|−\frac 25|
Projection =25×52\frac 25×\frac {5}{\sqrt 2}
Projection = 2\sqrt 2

So, the correct option is (b): 2\sqrt 2