Question
Mathematics Question on Vector Algebra
Let a=a1i^+a2j^+a3k^, ai>0, i=1,2,3 be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of a on the vector 3i^+4j^ be 7. Let b be a vector obtained by rotating a with 90°. If a,b and x-axis are co-planar, then projection of a vector b on 3i^+4j^ is equal to :
A
7
B
2
C
2
D
7
Answer
2
Explanation
Solution
cos2α+cos2β+cos2γ=1
⇒ cos2α=31
⇒cos α=31
a=3λ(i^+j^+k^), λ>0
3λ32+42(i^+j^+k^)⋅(3i^+4j^)=7
⇒3λ(3+4)=7×5
∴ λ=53
a=5(i^+j^+k^)
Let
b=pi^+qj^+rk^
a⋅b=0 and [abi^]=0
⇒p+q+r=0 …(i)
And
p 1 1q10r10=0
⇒b=−2ri^+rj^+rk^
⇒b=r(−2i^+j^+k^)
Now
∣a∣=∣b∣
53=∣r∣b
∣r∣=52
Projection of b on 3i^+4j^
= ∣32+42b⋅(3i^+4j^)∣
=∣r∣5(−6+4)
=∣−52∣
Projection =52×25
Projection = 2
So, the correct option is (b): 2