Solveeit Logo

Question

Mathematics Question on Vectors

Let a=a1i^+a2j^+a3k^\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} and b=b1i^+b2j^+b3k^\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} be two vectors such that a=1|\vec{a}| = 1, a×b=2\vec{a} \times \vec{b} = 2, and b=4|\vec{b}| = 4. If c=2(a×b)3b\vec{c} = 2(\vec{a} \times \vec{b}) - 3\vec{b}, then the angle between b\vec{b} and c\vec{c} is equal to:

A

cos1(32)\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)

B

cos1(13)\cos^{-1}\left(-\frac{1}{\sqrt{3}}\right)

C

cos1(23)\cos^{-1}\left(\frac{2}{\sqrt{3}}\right)

D

cos1(23)\cos^{-1}\left(\frac{2}{3}\right)

Answer

cos1(32)\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)

Explanation

Solution

Given a=1|\vec{a}| = 1, b=4|\vec{b}| = 4, and a×b=2\vec{a} \times \vec{b} = 2, we can find the magnitude of a×b\vec{a} \times \vec{b} and then use it to determine c\vec{c}.

  • Calculate a×b|\vec{a} \times \vec{b}|:

a×b=absinθ=4×32=23|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}| \sin \theta = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}

  • Find c|\vec{c}| using c=2(a×b)3b\vec{c} = 2(\vec{a} \times \vec{b}) - 3\vec{b}:

c2=4a×b2+9b2=4(12)+9(16)=48+144=192|\vec{c}|^2 = 4|\vec{a} \times \vec{b}|^2 + 9|\vec{b}|^2 = 4(12) + 9(16) = 48 + 144 = 192

c=83|\vec{c}| = 8\sqrt{3}

  • Find cosθ\cos \theta between b\vec{b} and c\vec{c}:

cosθ=bcbc=484×83=32\cos \theta = \frac{\vec{b} \cdot \vec{c}}{|\vec{b}||\vec{c}|} = \frac{-48}{4 \times 8\sqrt{3}} = -\frac{\sqrt{3}}{2}

Therefore, the angle θ=cos1(32)\theta = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right).