Question
Mathematics Question on Vectors
Let a=a1i^+a2j^+a3k^ and b=b1i^+b2j^+b3k^ be two vectors such that ∣a∣=1, a×b=2, and ∣b∣=4. If c=2(a×b)−3b, then the angle between b and c is equal to:
A
cos−1(−23)
B
cos−1(−31)
C
cos−1(32)
D
cos−1(32)
Answer
cos−1(−23)
Explanation
Solution
Given ∣a∣=1, ∣b∣=4, and a×b=2, we can find the magnitude of a×b and then use it to determine c.
- Calculate ∣a×b∣:
∣a×b∣=∣a∣∣b∣sinθ=4×23=23
- Find ∣c∣ using c=2(a×b)−3b:
∣c∣2=4∣a×b∣2+9∣b∣2=4(12)+9(16)=48+144=192
∣c∣=83
- Find cosθ between b and c:
cosθ=∣b∣∣c∣b⋅c=4×83−48=−23
Therefore, the angle θ=cos−1(−23).