Question
Mathematics Question on Vector Algebra
Let a=9i^−13j^+25k^, b=3i^+7j^−13k^, and c=17i^−2j^+k^ be three given vectors. If r is a vector such that r×a=(b+c)×a and r⋅(b−c)=0, then (593)2∣593r+67a∣2 is equal to _______.
Answer
Given:
a=9i−13j+25k,b=3i+7j−13k,c=17i−2j+k.
Compute b+c:
b+c=(3+17)i+(7−2)j+(−13+1)k=20i+5j−12k.
Compute b−c:
b−c=(3−17)i+(7+2)j+(−13−1)k=−14i+9j−14k.
Assume:
r=λ(b+c)+c.
Substitute r into r⋅(b−c)=0:
[λ(b+c)+c]⋅(b−c)=0.
Expand:
λ(b+c)⋅(b−c)+c⋅(b−c)=0.
Calculate:
(b+c)⋅(b−c)=∣b∣2−∣c∣2,c⋅(b−c)=−∣c∣2.
Simplify:
λ(∣b∣2−∣c∣2)−∣c∣2=0.
Solve for λ:
λ=(b+c)⋅(b−c)c⋅(b−c).
Substitute λ and find r. After simplifying:
r=593−67a.
Substitute r back into the given expression:
5932593r+67a∣r∣2=569.
Final Answer: 569.