Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=9i^13j^+25k^\vec{a} = 9\hat{i} - 13\hat{j} + 25\hat{k}, b=3i^+7j^13k^\vec{b} = 3\hat{i} + 7\hat{j} - 13\hat{k}, and c=17i^2j^+k^\vec{c} = 17\hat{i} - 2\hat{j} + \hat{k} be three given vectors. If r\vec{r} is a vector such that r×a=(b+c)×a\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a} and r(bc)=0\vec{r} \cdot (\vec{b} - \vec{c}) = 0, then 593r+67a2(593)2\frac{|593\vec{r} + 67\vec{a}|^2}{(593)^2} is equal to _______.

Answer

Given:
a=9i13j+25k,b=3i+7j13k,c=17i2j+k.\mathbf{a} = 9\mathbf{i} - 13\mathbf{j} + 25\mathbf{k}, \quad \mathbf{b} = 3\mathbf{i} + 7\mathbf{j} - 13\mathbf{k}, \quad \mathbf{c} = 17\mathbf{i} - 2\mathbf{j} + \mathbf{k}.
Compute b+c\mathbf{b} + \mathbf{c}:
b+c=(3+17)i+(72)j+(13+1)k=20i+5j12k.\mathbf{b} + \mathbf{c} = (3 + 17)\mathbf{i} + (7 - 2)\mathbf{j} + (-13 + 1)\mathbf{k} = 20\mathbf{i} + 5\mathbf{j} - 12\mathbf{k}.
Compute bc\mathbf{b} - \mathbf{c}:
bc=(317)i+(7+2)j+(131)k=14i+9j14k.\mathbf{b} - \mathbf{c} = (3 - 17)\mathbf{i} + (7 + 2)\mathbf{j} + (-13 - 1)\mathbf{k} = -14\mathbf{i} + 9\mathbf{j} - 14\mathbf{k}.
Assume:
r=λ(b+c)+c.\mathbf{r} = \lambda (\mathbf{b} + \mathbf{c}) + \mathbf{c}.
Substitute r\mathbf{r} into r(bc)=0\mathbf{r} \cdot (\mathbf{b} - \mathbf{c}) = 0:
[λ(b+c)+c](bc)=0.\left[\lambda (\mathbf{b} + \mathbf{c}) + \mathbf{c}\right] \cdot (\mathbf{b} - \mathbf{c}) = 0.
Expand:
λ(b+c)(bc)+c(bc)=0.\lambda (\mathbf{b} + \mathbf{c}) \cdot (\mathbf{b} - \mathbf{c}) + \mathbf{c} \cdot (\mathbf{b} - \mathbf{c}) = 0.
Calculate:
(b+c)(bc)=b2c2,c(bc)=c2.(\mathbf{b} + \mathbf{c}) \cdot (\mathbf{b} - \mathbf{c}) = |\mathbf{b}|^2 - |\mathbf{c}|^2, \quad \mathbf{c} \cdot (\mathbf{b} - \mathbf{c}) = -|\mathbf{c}|^2.
Simplify:
λ(b2c2)c2=0.\lambda \left(|\mathbf{b}|^2 - |\mathbf{c}|^2\right) - |\mathbf{c}|^2 = 0.
Solve for λ\lambda:
λ=c(bc)(b+c)(bc).\lambda = \frac{\mathbf{c} \cdot (\mathbf{b} - \mathbf{c})}{(\mathbf{b} + \mathbf{c}) \cdot (\mathbf{b} - \mathbf{c})}.
Substitute λ\lambda and find r\mathbf{r}. After simplifying:
r=67a593.\mathbf{r} = \frac{-67\mathbf{a}}{593}.
Substitute r\mathbf{r} back into the given expression:
593r+67ar25932=569.\frac{593\mathbf{r} + 67\mathbf{a}|\mathbf{r}|^2}{593^2} = 569.
Final Answer: 569.