Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=6i^+j^k^\vec{a} = 6\hat{i} + \hat{j} - \hat{k} and b=i^+j^\vec{b} = \hat{i} + \hat{j}. If c\vec{c} is a vector such that c6,ac=6c,ca=22|\vec{c}| \geq 6, \quad \vec{a} \cdot \vec{c} = 6 |\vec{c}|, \quad |\vec{c} - \vec{a}| = 2\sqrt{2} and the angle between a×b\vec{a} \times \vec{b} and c\vec{c} is 6060^\circ, then (a×b)×c|(\vec{a} \times \vec{b}) \times \vec{c}| is equal to:

A

92(66)\frac{9}{2}(6 - \sqrt{6})

B

323\frac{3}{2}\sqrt{3}

C

326\frac{3}{2}\sqrt{6}

D

92(6+6)\frac{9}{2}(6 + \sqrt{6})

Answer

92(6+6)\frac{9}{2}(6 + \sqrt{6})

Explanation

Solution

(a×b)c=a×bc32|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a} \times \vec{b}| |\vec{c}| \cdot \frac{\sqrt{3}}{2}

Given:

ca=22|\vec{c} - \vec{a}| = 2\sqrt{2}

Using the formula for magnitude:

c2+a22ac=8|\vec{c}|^2 + |\vec{a}|^2 - 2 \cdot \vec{a} \cdot \vec{c} = 8

c2+3812c=8|\vec{c}|^2 + 38 - 12|\vec{c}| = 8

c212c+30=0|\vec{c}|^2 - 12|\vec{c}| + 30 = 0

Solving this quadratic equation:

c=12±1441202|\vec{c}| = \frac{12 \pm \sqrt{144 - 120}}{2}

c=12±262|\vec{c}| = \frac{12 \pm 2\sqrt{6}}{2}

c=6+6|\vec{c}| = 6 + \sqrt{6}

Now, calculating a×b\vec{a} \times \vec{b}:

a×b=i^j^k^ 611 110\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 6 & 1 & -1 \\\ 1 & 1 & 0 \end{vmatrix}

=i^+7j^+5k^= -\hat{i} + 7\hat{j} + 5\hat{k}

a×b=27|\vec{a} \times \vec{b}| = \sqrt{27}

Thus,

(a×b)c=27(6+6)32|(\vec{a} \times \vec{b}) \cdot \vec{c}| = \sqrt{27}(6 + \sqrt{6}) \cdot \frac{\sqrt{3}}{2}

=92(6+6)= \frac{9}{2}(6 + \sqrt{6})