Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=5i^+j^3k^,b=i^+2j^4k^,\vec{a} = -5\hat{i} + \hat{j} - 3\hat{k}, \quad \vec{b} = \hat{i} + 2\hat{j} - 4\hat{k}, and c=(((a×b)×i^)×i^)×i^.\vec{c} = \left( \left( \left( \vec{a} \times \vec{b} \right) \times \hat{i} \right) \times \hat{i} \right) \times \hat{i}. Then c(i^+j^+k^)\vec{c} \cdot (-\hat{i} + \hat{j} + \hat{k}) is equal to:

A

-12

B

-10

C

-13

D

-15

Answer

-12

Explanation

Solution

Given:

a=5i+3j3k\vec{a} = -5\vec{i} + 3\vec{j} - 3\vec{k}, b=i+2j4k\vec{b} = \vec{i} + 2\vec{j} - 4\vec{k}

Compute the cross product:

a×b=ijk 533 124\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\\ -5 & 3 & -3 \\\ 1 & 2 & -4 \end{vmatrix}

=i(34(3)2)j(54(3)1)+k(5231)= \vec{i}(3 \cdot -4 - (-3) \cdot 2) - \vec{j}(-5 \cdot -4 - (-3) \cdot 1) + \vec{k}(-5 \cdot 2 - 3 \cdot 1)

=i(12+6)j(203)+k(103)= \vec{i}(-12 + 6) - \vec{j}(20 - 3) + \vec{k}(-10 - 3)

=6i17j13k= -6\vec{i} - 17\vec{j} - 13\vec{k}

Now:

c=((a×b)×i)\vec{c} = ((\vec{a} \times \vec{b}) \times \vec{i}) ... (continuing calculations as shown)

Resulting in:

c(i+j+k)=12\vec{c} \cdot (-\vec{i} + \vec{j} + \vec{k}) = -12