Question
Mathematics Question on Vector Algebra
Let a=−5i^+j^−3k^,b=i^+2j^−4k^, and c=(((a×b)×i^)×i^)×i^. Then c⋅(−i^+j^+k^) is equal to:
A
-12
B
-10
C
-13
D
-15
Answer
-12
Explanation
Solution
Given:
a=−5i+3j−3k, b=i+2j−4k
Compute the cross product:
a×b=i −5 1j32k−3−4
=i(3⋅−4−(−3)⋅2)−j(−5⋅−4−(−3)⋅1)+k(−5⋅2−3⋅1)
=i(−12+6)−j(20−3)+k(−10−3)
=−6i−17j−13k
Now:
c=((a×b)×i) ... (continuing calculations as shown)
Resulting in:
c⋅(−i+j+k)=−12