Question
Mathematics Question on Vector Algebra
Let a=4i^−j^+k^, b=11i^−j^+k^, and c be a vector such that (a+b)×c=c×(−2a+3b). If (2a+3b)⋅c=1670, then ∣c∣2 is equal to:
A
1627
B
1618
C
1600
D
1609
Answer
1618
Explanation
Solution
Given: (a+b)×c=c×(−2a+3b).
Expanding: (a+b)×c+c×(−2a+3b)=0.
This implies that: c=λ(4b−a).
We substitute the values of a and b: c=λ(4(11i^−j^+k^)−(4i^−j^+k^)), c=λ(40i^−3j^+3k^).
Given that: (2a+3b)⋅c=1670.
Calculating 2a+3b: 2a+3b=2(4i^−j^+k^)+3(11i^−j^+k^), 2a+3b=(8+33)i^+(−2−3)j^+(2+3)k^, 2a+3b=41i^−5j^+5k^.
Now, we compute: (2a+3b)⋅c=(41i^−5j^+5k^)⋅λ(40i^−3j^+3k^), (2a+3b)⋅c=λ(41⋅40+(−5)⋅(−3)+5⋅3), 1670=λ(1640+15+15), 1670=1670λ⟹λ=1.
Thus: c=40i^−3j^+3k^.
Calculating ∣c∣2: ∣c∣2=402+(−3)2+32, ∣c∣2=1600+9+9, ∣c∣2=1618.
Therefore: 1618.