Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=4i^j^+k^\vec{a} = 4\hat{i} - \hat{j} + \hat{k}, b=11i^j^+k^\vec{b} = 11\hat{i} - \hat{j} + \hat{k}, and c\vec{c} be a vector such that (a+b)×c=c×(2a+3b).(\vec{a} + \vec{b}) \times \vec{c} = \vec{c} \times (-2\vec{a} + 3\vec{b}). If (2a+3b)c=1670(2\vec{a} + 3\vec{b}) \cdot \vec{c} = 1670, then c2|\vec{c}|^2 is equal to:

A

1627

B

1618

C

1600

D

1609

Answer

1618

Explanation

Solution

Given: (a+b)×c=c×(2a+3b).(\vec{a} + \vec{b}) \times \vec{c} = \vec{c} \times (-2\vec{a} + 3\vec{b}).

Expanding: (a+b)×c+c×(2a+3b)=0.(\vec{a} + \vec{b}) \times \vec{c} + \vec{c} \times (-2\vec{a} + 3\vec{b}) = 0.

This implies that: c=λ(4ba).\vec{c} = \lambda (4\vec{b} - \vec{a}).

We substitute the values of a\vec{a} and b\vec{b}: c=λ(4(11i^j^+k^)(4i^j^+k^)),\vec{c} = \lambda \left( 4(11\hat{i} - \hat{j} + \hat{k}) - (4\hat{i} - \hat{j} + \hat{k}) \right), c=λ(40i^3j^+3k^).\vec{c} = \lambda (40\hat{i} - 3\hat{j} + 3\hat{k}).

Given that: (2a+3b)c=1670.(2\vec{a} + 3\vec{b}) \cdot \vec{c} = 1670.

Calculating 2a+3b2\vec{a} + 3\vec{b}: 2a+3b=2(4i^j^+k^)+3(11i^j^+k^),2\vec{a} + 3\vec{b} = 2(4\hat{i} - \hat{j} + \hat{k}) + 3(11\hat{i} - \hat{j} + \hat{k}), 2a+3b=(8+33)i^+(23)j^+(2+3)k^,2\vec{a} + 3\vec{b} = (8 + 33)\hat{i} + (-2 - 3)\hat{j} + (2 + 3)\hat{k}, 2a+3b=41i^5j^+5k^.2\vec{a} + 3\vec{b} = 41\hat{i} - 5\hat{j} + 5\hat{k}.

Now, we compute: (2a+3b)c=(41i^5j^+5k^)λ(40i^3j^+3k^),(2\vec{a} + 3\vec{b}) \cdot \vec{c} = (41\hat{i} - 5\hat{j} + 5\hat{k}) \cdot \lambda (40\hat{i} - 3\hat{j} + 3\hat{k}), (2a+3b)c=λ(4140+(5)(3)+53),(2\vec{a} + 3\vec{b}) \cdot \vec{c} = \lambda (41 \cdot 40 + (-5) \cdot (-3) + 5 \cdot 3), 1670=λ(1640+15+15),1670 = \lambda (1640 + 15 + 15), 1670=1670λ    λ=1.1670 = 1670\lambda \implies \lambda = 1.

Thus: c=40i^3j^+3k^.\vec{c} = 40\hat{i} - 3\hat{j} + 3\hat{k}.

Calculating c2|\vec{c}|^2: c2=402+(3)2+32,|\vec{c}|^2 = 40^2 + (-3)^2 + 3^2, c2=1600+9+9,|\vec{c}|^2 = 1600 + 9 + 9, c2=1618.|\vec{c}|^2 = 1618.

Therefore: 1618.1618.