Solveeit Logo

Question

Mathematics Question on Product of Two Vectors

Let a=3i^+j^\vec{a} = 3\hat{i} + \hat{j} and b=i^+2j^+k^\vec{b} = \hat{i} + 2\hat{j} + \hat{k}.
Let c\vec{c} be a vector satisfying a×(b×c)=b+λc\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} + \lambda \vec{c}
If b\vec{b} and c\vec{c} are non-parallel, then the value of λλ is

A

-5

B

5

C

1

D

-1

Answer

-5

Explanation

Solution

a=3i^+j^andb=i^+2j^+k^\vec{a} = 3\hat{i} + \hat{j} \quad \text{and} \quad \vec{b} = \hat{i} + 2\hat{j} + \hat{k}
a×(b×c)=(ac)b(ab)c=b+λc\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = \vec{b} + \lambda \vec{c}
If bandc\vec{b} \quad \text{and} \quad \vec{c} are non-parallel, then
ac=1andab=λ\vec{a} \cdot \vec{c} = 1 \quad \text{and} \quad \vec{a} \cdot \vec{b} = -\lambda
but ab=5\vec{a} \cdot \vec{b} = 5
λ=5⇒λ=−5
So, the correct option is (A): -5