Question
Mathematics Question on Vector Algebra
Let a=3i^+j^−2k^, b=4i^+j^+7k^, and c=i^−3j^+4k^ be three vectors.
If a vector p satisfies p×b=c×b and p⋅a=0, then p⋅(i^−j^−k^) is equal to
A
24
B
36
C
28
D
32
Answer
32
Explanation
Solution
Given:
p×b−c×b=0⟹(p−c)×b=0
This implies:
p−c=λb⟹p=c+λb
Given that p⋅a=0, we have:
(c+λb)⋅a=0
Substituting values:
c⋅a+λ(b⋅a)=0 (3−3−8)+λ(12+1−14)=0⟹λ=−8
Thus:
p=c−8b=−31i^−11j^−52k^
Now, compute:
p⋅(i^−j^−k^) =(−31)(1)+(−11)(−1)+(−52)(−1) =−31+11+52=32