Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=3i^+j^2k^\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}, b=4i^+j^+7k^\vec{b} = 4\hat{i} + \hat{j} + 7\hat{k}, and c=i^3j^+4k^\vec{c} = \hat{i} - 3\hat{j} + 4\hat{k} be three vectors.
If a vector p\vec{p} satisfies p×b=c×b\vec{p} \times \vec{b} = \vec{c} \times \vec{b} and pa=0\vec{p} \cdot \vec{a} = 0, then p(i^j^k^)\vec{p} \cdot (\hat{i} - \hat{j} - \hat{k}) is equal to

A

24

B

36

C

28

D

32

Answer

32

Explanation

Solution

Given:

p×bc×b=0    (pc)×b=0\vec{p} \times \vec{b} - \vec{c} \times \vec{b} = 0 \quad \implies \quad (\vec{p} - \vec{c}) \times \vec{b} = 0

This implies:

pc=λb    p=c+λb\vec{p} - \vec{c} = \lambda \vec{b} \quad \implies \quad \vec{p} = \vec{c} + \lambda \vec{b}

Given that pa=0\vec{p} \cdot \vec{a} = 0, we have:

(c+λb)a=0(\vec{c} + \lambda \vec{b}) \cdot \vec{a} = 0

Substituting values:

ca+λ(ba)=0\vec{c} \cdot \vec{a} + \lambda (\vec{b} \cdot \vec{a}) = 0 (338)+λ(12+114)=0    λ=8(3 - 3 - 8) + \lambda (12 + 1 - 14) = 0 \quad \implies \quad \lambda = -8

Thus:

p=c8b=31i^11j^52k^\vec{p} = \vec{c} - 8\vec{b} = -31\hat{i} - 11\hat{j} - 52\hat{k}

Now, compute:

p(i^j^k^)\vec{p} \cdot (\hat{i} - \hat{j} - \hat{k}) =(31)(1)+(11)(1)+(52)(1)= (-31)(1) + (-11)(-1) + (-52)(-1) =31+11+52=32= -31 + 11 + 52 = 32