Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=3i^+2j^+k^\vec{a} = 3\hat{i} + 2\hat{j} + \hat{k}, b=2i^j^+3k^\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}, and c\vec{c} be a vector such that

(a+b)×c=2(a×b)+24j^6k^(\vec{a} + \vec{b}) \times \vec{c} = 2(\vec{a} \times \vec{b}) + 24\hat{j} - 6\hat{k} and (ab+i^)c=3.(\vec{a} - \vec{b} + \hat{i}) \cdot \vec{c} = -3.Then c2|\vec{c}|^2 is equal to \\_\\_\\_\\_\\_.

Answer

Calculate (a+b)×c(\vec{a} + \vec{b}) \times \vec{c}:

a+b=(3+5)i^+(21)j^+(1+3)k^=8i^+j^+4k^.\vec{a} + \vec{b} = (3 + 5) \hat{i} + (2 - 1) \hat{j} + (1 + 3) \hat{k} = 8 \hat{i} + \hat{j} + 4 \hat{k}.

Then,

(a+b)×c=2(a×b)+24j^6k^.(\vec{a} + \vec{b}) \times \vec{c} = 2 (\vec{a} \times \vec{b}) + 24 \hat{j} - 6 \hat{k}.

Solving for c\vec{c} using the vector equation and substituting values, we get:

c2=25+9+4=38.|\vec{c}|^2 = 25 + 9 + 4 = 38.

Therefore, the answer is: 38.