Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a\vec{a} = 2i^\widehat{i}+3j^\widehat{j}+4k^\widehat{k}, b\vec{b} = i^\widehat{i}-2j^\widehat{j}-2k^\widehat{k}, c\vec{c} = -i^\widehat{i}+4j^\widehat{j}+3k^\widehat{k} and d\vec{d} is a vector perpendicular to b\vec{b} and c\vec{c}, a\vec{a}.d\vec{d} = 18, then find |a\vec{a}xd\vec{d}|2

A

720

B

700

C

360

D

300

Answer

720

Explanation

Solution

d=λ(b×c)=λ(2i^j^+2k^)\vec{d}=\lambda (\vec{b}\times \vec{c})=\lambda (2\widehat{i}-\widehat{j}+2\widehat{k})
a.d=18\vec{a}.\vec{d}=18
λ=2\Rightarrow \lambda =2
Therefore, a×d2=a2d2(a.d)2|\vec{a}\times \vec{d}|^{2}=\vec{a}^{2}\vec{d}^{2}-(\vec{a}.\vec{d})^{2}
a×d2=29×36324=1044324=720\Rightarrow |\vec{a}\times \vec{d}|^{2}=29\times 36-324=1044-324=720