Solveeit Logo

Question

Question: Let \(\vec{a}=2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k}\), \(\vec{b}=4\hat{i}+\left( 3-{{\lambda }_{...

Let a=2i^+λ1j^+3k^\vec{a}=2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k}, b=4i^+(3λ2)j^+6k^\vec{b}=4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k} and c=3i^+6j^+(λ31)k^\vec{c}=3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k} be three vectors such that b=2a\vec{b}=2\vec{a} and a\vec{a} is perpendicular to c\vec{c}, then find the possible value of (λ1,λ2,λ3)\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)?
(a) (12,4,2)\left( \dfrac{1}{2},4,-2 \right),
(b) (12,4,0)\left( -\dfrac{1}{2},4,0 \right),
(c) (1,3,1)\left( 1,3,1 \right),
(d) (1,5,1)\left( 1,5,1 \right).

Explanation

Solution

We start solving the problem by using the given condition b=2a\vec{b}=2\vec{a} to get the relation between λ1{{\lambda }_{1}} and λ2{{\lambda }_{2}}. We use the fact that the dot product of product of two perpendicular vectors is zero for the vectors a\vec{a} and c\vec{c} to get the relation between the λ1{{\lambda }_{1}} and λ3{{\lambda }_{3}}. We assume the values for λ1{{\lambda }_{1}} as per the requirement of the problem to get the desired result.

Complete step-by-step answer:

According to the problem, we have three vectors given as a=2i^+λ1j^+3k^\vec{a}=2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k}, b=4i^+(3λ2)j^+6k^\vec{b}=4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k} and c=3i^+6j^+(λ31)k^\vec{c}=3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k}. It is also said that b=2a\vec{b}=2\vec{a} and a\vec{a} is perpendicular to c\vec{c}. We need to find the possible value of (λ1,λ2,λ3)\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right).
Let us use our first condition b=2a\vec{b}=2\vec{a}.
4i^+(3λ2)j^+6k^=2×(2i^+λ1j^+3k^)\Rightarrow 4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}=2\times \left( 2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k} \right).
4i^+(3λ2)j^+6k^=4i^+2λ1j^+6k^\Rightarrow 4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}=4\hat{i}+2{{\lambda }_{1}}\hat{j}+6\hat{k}.
We compare the coefficients of j^\hat{j} on both sides.
3λ2=2λ1\Rightarrow 3-{{\lambda }_{2}}=2{{\lambda }_{1}}
λ2=32λ1\Rightarrow {{\lambda }_{2}}=3-2{{\lambda }_{1}} ---(1).
We have our second condition as a\vec{a} is perpendicular to c\vec{c}. We know that the dot product of two perpendicular vectors is zero.
So, we have ac=0\vec{a}\bullet \vec{c}=0.
(2i^+λ1j^+3k^)(3i^+6j^+(λ31)k^)=0\Rightarrow \left( 2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k} \right)\bullet \left( 3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k} \right)=0.
We know that dot product of two vectors ai^+bj^+ck^a\hat{i}+b\hat{j}+c\hat{k} and di^+ej^+fk^d\hat{i}+e\hat{j}+f\hat{k} is defined as (ai^+bj^+ck^)(di^+ej^+fk^)=ad+be+cf\left( a\hat{i}+b\hat{j}+c\hat{k} \right)\bullet \left( d\hat{i}+e\hat{j}+f\hat{k} \right)=ad+be+cf.
(2×3)+(λ1×6)+(3×(λ31))=0\Rightarrow \left( 2\times 3 \right)+\left( {{\lambda }_{1}}\times 6 \right)+\left( 3\times \left( {{\lambda }_{3}}-1 \right) \right)=0.
6+6λ1+3λ33=0\Rightarrow 6+6{{\lambda }_{1}}+3{{\lambda }_{3}}-3=0.
6λ1+3λ3+3=0\Rightarrow 6{{\lambda }_{1}}+3{{\lambda }_{3}}+3=0.
2λ1+λ3+1=0\Rightarrow 2{{\lambda }_{1}}+{{\lambda }_{3}}+1=0.
λ3=2λ11\Rightarrow {{\lambda }_{3}}=-2{{\lambda }_{1}}-1 ---(2).
From equations (1) and (2), we got (λ1,λ2,λ3)=(λ1,32λ1,2λ11)\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( {{\lambda }_{1}},3-2{{\lambda }_{1}},-2{{\lambda }_{1}}-1 \right) ---(3).
Let us assume the value of λ1{{\lambda }_{1}} as 12\dfrac{1}{2}. We substitute in equation (3).
(λ1,λ2,λ3)=(12,32(12),2(12)1)\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},3-2\left( \dfrac{1}{2} \right),-2\left( \dfrac{1}{2} \right)-1 \right).
(λ1,λ2,λ3)=(12,31,11)\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},3-1,-1-1 \right).
(λ1,λ2,λ3)=(12,2,2)\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},2,-2 \right) ---(4).
Let us assume the value of λ1{{\lambda }_{1}} as 12\dfrac{-1}{2}. We substitute in equation (3).
(λ1,λ2,λ3)=(12,32(12),2(12)1)\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},3-2\left( \dfrac{-1}{2} \right),-2\left( \dfrac{-1}{2} \right)-1 \right).
(λ1,λ2,λ3)=(12,3+1,+11)\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},3+1,+1-1 \right).
(λ1,λ2,λ3)=(12,4,0)\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},4,0 \right) ---(5).
Let us assume the value of λ1{{\lambda }_{1}} as 1. We substitute in equation (3).
(λ1,λ2,λ3)=(1,32(1),2(1)1)\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,3-2\left( 1 \right),-2\left( 1 \right)-1 \right).
(λ1,λ2,λ3)=(1,32,21)\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,3-2,-2-1 \right).
(λ1,λ2,λ3)=(1,1,3)\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,1,-3 \right) ---(6).
From equations (4), (5) and (6), we can see there is only one option matching our answer i.e., (λ1,λ2,λ3)=(12,4,0)\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},4,0 \right).
We have found one of the possible values of (λ1,λ2,λ3)\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right) as (12,4,0)\left( \dfrac{-1}{2},4,0 \right).

So, the correct answer is “Option b”.

Note: We can get other condition as the vector b\vec{b} is perpendicular to c\vec{c} as vector b\vec{b} is parallel to the vector a\vec{a}. This condition also leads to the same condition as equation (1) which makes our problem not solvable for a single solution. Since we have only two equations for solving three variables, we could not get a single definite solution. Instead, we get infinite no. of solutions for the given problem.