Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=2i^+j^k^\vec{a} = 2\hat{i} + \hat{j} - \hat{k}, b=((a×(i^+j^))×i^)×i^\vec{b} = \left((\vec{a} \times (\hat{i} + \hat{j})) \times \hat{i}\right) \times \hat{i}. Then the square of the projection of a\vec{a} on b\vec{b} is:

A

15\frac{1}{5}

B

2

C

13\frac{1}{3}

D

23\frac{2}{3}

Answer

2

Explanation

Solution

Step 1: Calculate a×(i^+j^)\vec{a} \times (\hat{i} + \hat{j}):
a×(i^+j^)=i^j^k^\211\110=i^+k^\vec{a} \times (\hat{i} + \hat{j}) =\begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\\2 & 1 & -1 \\\1 & 1 & 0\end{vmatrix}= -\hat{i} + \hat{k}
Step 2: Calculate (a×(i^+j^))×i^(\vec{a} \times (\hat{i} + \hat{j})) \times \hat{i}:
(a×(i^+j^))×i^=(i^+k^)×i^=k^+j^(\vec{a} \times (\hat{i} + \hat{j})) \times \hat{i} = (-\hat{i} + \hat{k}) \times \hat{i} = \hat{k} + \hat{j}
Step 3: Calculate ((a×(i^+j^))×i^)×i^((\vec{a} \times (\hat{i} + \hat{j})) \times \hat{i}) \times \hat{i}:
((a×(i^+j^))×i^)×i^=(k^+j^)×i^=j^k^((\vec{a} \times (\hat{i} + \hat{j})) \times \hat{i}) \times \hat{i} = (\hat{k} + \hat{j}) \times \hat{i} = \hat{j} - \hat{k}
Thus, b=j^k^\vec{b} = \hat{j} - \hat{k}.
Step 4: Find the projection of a\vec{a} on b\vec{b}:
Projection of a on b=abb\text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}
Calculating ab\vec{a} \cdot \vec{b} and b|\vec{b}|:
ab=(2)(0)+(1)(1)+(1)(1)=1+1=2\vec{a} \cdot \vec{b} = (2)(0) + (1)(1) + (-1)(-1) = 1 + 1 = 2
b=12+(1)2=2|\vec{b}| = \sqrt{1^2 + (-1)^2} = \sqrt{2}
Projection of a on b=22=2\text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{2}{\sqrt{2}} = \sqrt{2}
Therefore, the square of the projection is:
(2)2=2(\sqrt{2})^2 = 2