Question
Mathematics Question on Vector Algebra
Let a=2i^+j^−k^, b=((a×(i^+j^))×i^)×i^. Then the square of the projection of a on b is:
A
51
B
2
C
31
D
32
Answer
2
Explanation
Solution
Step 1: Calculate a×(i^+j^):
a×(i^+j^)=i^\2\1j^11k^−10=−i^+k^
Step 2: Calculate (a×(i^+j^))×i^:
(a×(i^+j^))×i^=(−i^+k^)×i^=k^+j^
Step 3: Calculate ((a×(i^+j^))×i^)×i^:
((a×(i^+j^))×i^)×i^=(k^+j^)×i^=j^−k^
Thus, b=j^−k^.
Step 4: Find the projection of a on b:
Projection of a on b=∣b∣a⋅b
Calculating a⋅b and ∣b∣:
a⋅b=(2)(0)+(1)(1)+(−1)(−1)=1+1=2
∣b∣=12+(−1)2=2
Projection of a on b=22=2
Therefore, the square of the projection is:
(2)2=2