Solveeit Logo

Question

Question: Let \(\vec{a}=2\hat{i}+\hat{j}-\hat{k}\text{ and }\vec{b}=\hat{i}+2\hat{j}+\hat{k}\) be two vectors....

Let a=2i^+j^k^ and b=i^+2j^+k^\vec{a}=2\hat{i}+\hat{j}-\hat{k}\text{ and }\vec{b}=\hat{i}+2\hat{j}+\hat{k} be two vectors. Consider a vector c=αa+βb,α,βR\vec{c}=\alpha \vec{a}+\beta \vec{b},\alpha ,\beta \in R. If the projection of c\vec{c} on vector (a+b)\left( \vec{a}+\vec{b} \right) is 323\sqrt{2} then minimum value of (c(a×b))c\left( \vec{c}-\left( \vec{a}\times \vec{b} \right) \right)\cdot \vec{c} is equal to ...

Explanation

Solution

In this question, we are given three vectors a,b,c\vec{a},\vec{b},\vec{c}. We have to find minimum value (c(a×b))c\left( \vec{c}-\left( \vec{a}\times \vec{b} \right) \right)\cdot \vec{c} when projection of c\vec{c} on vector (a+b)\left( \vec{a}+\vec{b} \right) is given. For this, we will first calculate projection of c\vec{c} on (a+b)\left( \vec{a}+\vec{b} \right) in our own terms to find value of a+b which will be used in (c(a×b))c\left( \vec{c}-\left( \vec{a}\times \vec{b} \right) \right)\cdot \vec{c}. We will use following properties of vectors to evaluate our answer:
(I) Projection of B\vec{B} on A\vec{A} is given as AAB\dfrac{{\vec{A}}}{\left| {\vec{A}} \right|}\cdot \vec{B} where A\left| {\vec{A}} \right| represents the magnitude of A\vec{A}.
(II) Magnitude of xi^+yj^+zk^x\hat{i}+y\hat{j}+z\hat{k} is given as A=x2+y2+z2\left| {\vec{A}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}.
(III) Dot product of A=x1i^+y1j^+z1k^ and B=x2i^+y2j^+z2k^\vec{A}={{x}_{1}}\hat{i}+{{y}_{1}}\hat{j}+{{z}_{1}}\hat{k}\text{ and }\vec{B}={{x}_{2}}\hat{i}+{{y}_{2}}\hat{j}+{{z}_{2}}\hat{k} is given as AB=x1x2+y1y2+z1z2\vec{A}\cdot \vec{B}={{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}+{{z}_{1}}{{z}_{2}}.
(IV) aa=a2\vec{a}\cdot \vec{a}={{\left| {\vec{a}} \right|}^{2}} where a\left| {\vec{a}} \right| is the magnitude of a\vec{a}.
(V) ab=ba\vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a} which is commutative property.
(VI) (a×b)c\left( \vec{a}\times \vec{b} \right)\cdot \vec{c} is equal to zero if any two of the vectors are equal.

Complete step-by-step solution:
Here, we are given vector a\vec{a} as 2i^+j^k^2\hat{i}+\hat{j}-\hat{k} and vector b\vec{b} as i^+2j^+k^\hat{i}+2\hat{j}+\hat{k}. Vector c\vec{c} is given as c=αa+βb\vec{c}=\alpha \vec{a}+\beta \vec{b} where α,βR\alpha ,\beta \in R.
We know, projection of any vector B\vec{B} on A\vec{A} is given by AAB\dfrac{{\vec{A}}}{\left| {\vec{A}} \right|}\cdot \vec{B}.
Here, projection of c\vec{c} on (a+b)\left( \vec{a}+\vec{b} \right) is given as 323\sqrt{2} therefore,
(a+b)(a+b)c=32(1)\Rightarrow \dfrac{\left( \vec{a}+\vec{b} \right)}{\left( \left| \vec{a}+\vec{b} \right| \right)}\cdot \vec{c}=3\sqrt{2}\cdots \cdots \cdots \cdots \left( 1 \right)
Let us evaluate left side,
(a+b)\left( \vec{a}+\vec{b} \right) will be equal to 2i^+j^k^+i^+2j^+k^3i^+3j^\Rightarrow 2\hat{i}+\hat{j}-\hat{k}+\hat{i}+2\hat{j}+\hat{k}\Rightarrow 3\hat{i}+3\hat{j}.
a+b\left| \vec{a}+\vec{b} \right| represent magnitude of (a+b)\left( \vec{a}+\vec{b} \right) and magnitude of any vector A=xi^+yj^+zk^\vec{A}=x\hat{i}+y\hat{j}+z\hat{k} is given by x2+y2+z2\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}} therefore, a+b=(3)2+(3)2=9+9=18\Rightarrow \left| \vec{a}+\vec{b} \right|=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 3 \right)}^{2}}}=\sqrt{9+9}=\sqrt{18}.
Now, 18\sqrt{18} can be written as 3×3×2=32\Rightarrow \sqrt{3\times 3\times 2}=3\sqrt{2}.
So, a+b=32\Rightarrow \left| \vec{a}+\vec{b} \right|=3\sqrt{2}.
Now, a=2i^+j^k^\vec{a}=2\hat{i}+\hat{j}-\hat{k} so aa=(2i^+j^k^)(2i^+j^k^)\vec{a}\cdot \vec{a}=\left( 2\hat{i}+\hat{j}-\hat{k} \right)\cdot \left( 2\hat{i}+\hat{j}-\hat{k} \right).
We know aa=a2\vec{a}\cdot \vec{a}={{\left| {\vec{a}} \right|}^{2}},a2=4+1+1=6\therefore {{\left| {\vec{a}} \right|}^{2}}=4+1+1=6.
Therefore, a2=6\Rightarrow {{\left| {\vec{a}} \right|}^{2}}=6.
And b=i^+2j^+k^\vec{b}=\hat{i}+2\hat{j}+\hat{k} so
bb=(i^+2j^+k^)(i^+2j^+k^) b2=1+4+1=6 \begin{aligned} &\Rightarrow \vec{b}\cdot \vec{b}=\left( \hat{i}+2\hat{j}+\hat{k} \right)\cdot \left( \hat{i}+2\hat{j}+\hat{k} \right) \\\ & \Rightarrow {{\left| {\vec{b}} \right|}^{2}}=1+4+1=6 \\\ \end{aligned}
Therefore, b2=6\Rightarrow {{\left| {\vec{b}} \right|}^{2}}=6.
Now (a+b)c\left( \vec{a}+\vec{b} \right)\cdot \vec{c} is equal to (a+b)(αa+βb)\left( \vec{a}+\vec{b} \right)\cdot \left( \alpha \vec{a}+\beta \vec{b} \right).
αaa+αba+βab+βbb\Rightarrow \alpha \vec{a}\cdot \vec{a}+\alpha \vec{b}\cdot \vec{a}+\beta \vec{a}\cdot \vec{b}+\beta \vec{b}\cdot \vec{b}
We know, ab=ba\vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a} so we get:
αa2+α(ab)+β(ab)+βb2(2)\Rightarrow \alpha {{\left| {\vec{a}} \right|}^{2}}+\alpha \left( \vec{a}\cdot \vec{b} \right)+\beta \left( \vec{a}\cdot \vec{b} \right)+\beta {{\left| {\vec{b}} \right|}^{2}}\cdots \cdots \cdots \cdots \left( 2 \right)
ab\vec{a}\cdot \vec{b} can be calculated as (2i^+j^k^)(i^+2j^+k^)=2+21=3\Rightarrow \left( 2\hat{i}+\hat{j}-\hat{k} \right)\cdot \left( \hat{i}+2\hat{j}+\hat{k} \right)=2+2-1=3.
So, ab=3\Rightarrow \vec{a}\cdot \vec{b}=3.
Using value of a2,b2 and (ab){{\left| {\vec{a}} \right|}^{2}},{{\left| {\vec{b}} \right|}^{2}}\text{ and }\left( \vec{a}\cdot \vec{b} \right) in (2) we get:

& \Rightarrow \alpha \left( 6 \right)+\alpha \left( 3 \right)+\beta \left( 3 \right)+\beta \left( 6 \right) \\\ & \Rightarrow 9\alpha +9\beta \\\ & \Rightarrow 9\left( \alpha +\beta \right) \\\ \end{aligned}$$ Now, put value of $\left( \vec{a}+\vec{b} \right)\cdot \vec{c}\text{ and }\left| \vec{a}+\vec{b} \right|$ in (1) we get: $$\begin{aligned} & \Rightarrow \dfrac{9\left( \alpha +\beta \right)}{3\sqrt{2}}=3\sqrt{2} \\\ & \Rightarrow 9\left( \alpha +\beta \right)=3\sqrt{2}\times 3\sqrt{2} \\\ & \Rightarrow 9\left( \alpha +\beta \right)=18 \\\ & \Rightarrow \alpha +\beta =2 \\\ \end{aligned}$$ Let us evaluate $\left( \vec{c}-\left( \vec{a}\times \vec{b} \right) \right)\cdot \vec{c}$. Putting the value of $\vec{c}$. $$\begin{aligned} & \Rightarrow \left( \alpha \vec{a}+\beta \vec{b}-\left( \vec{a}\times \vec{b} \right) \right)\cdot \left( \alpha \vec{a}+\beta \vec{b} \right) \\\ & \Rightarrow {{\alpha }^{2}}\vec{a}\cdot \vec{a}+\beta \alpha \left( \vec{b}\cdot \vec{a} \right)-\alpha \left( \vec{a}\times \vec{b} \right)\cdot \vec{a}+\alpha \beta \vec{a}\cdot \vec{b}+{{\beta }^{2}}\vec{b}\cdot \vec{b}-\beta \left( \vec{a}\times \vec{b} \right)\cdot \vec{b} \\\ & \Rightarrow {{\alpha }^{2}}{{\left| {\vec{a}} \right|}^{2}}+\alpha \beta \left( \vec{a}\cdot \vec{b} \right)-\alpha \left[ \left( \vec{a}\times \vec{b} \right)\cdot \vec{a} \right]+\alpha \beta \left( \vec{a}\cdot \vec{b} \right)+{{\beta }^{2}}{{\left| {\vec{b}} \right|}^{2}}-\beta \left[ \left( \vec{a}\times \vec{b} \right)\cdot \vec{b} \right] \\\ \end{aligned}$$ Using values of ${{\left| {\vec{a}} \right|}^{2}},{{\left| {\vec{b}} \right|}^{2}}\text{ and }\left( \vec{a}\cdot \vec{b} \right)$ we get: $$\Rightarrow 6{{\alpha }^{2}}+3\alpha \beta -\alpha \left[ \left( \vec{a}\times \vec{b} \right)\cdot \vec{a} \right]+3\alpha \beta +6{{\beta }^{2}}-\beta \left[ \left( \vec{a}\times \vec{b} \right)\cdot \vec{b} \right]$$ As we can see $\left( \vec{a}\times \vec{b} \right)\cdot \vec{a}\text{ and }\left( \vec{a}\times \vec{b} \right)\cdot \vec{b}$ are triple products with two same vectors, so its value will be zero. Hence, above equation becomes $\Rightarrow 6{{\alpha }^{2}}+6{{\beta }^{2}}+3\alpha \beta +3\alpha \beta =6\left[ {{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta \right]$. Let us add and subtract $2\alpha \beta $ in above, we get: $\Rightarrow 6\left( {{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta -2\alpha \beta +\alpha \beta \right)=6\left( {{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta -\alpha \beta \right)$ We know, ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$ using that, we get: $\Rightarrow 6\left( {{\left( \alpha +\beta \right)}^{2}}-\alpha \beta \right)$ Now, we know $\alpha +\beta =2$ therefore, we get $\Rightarrow 6\left[ 4-\alpha \beta \right]$. $\beta $ can be written as $2-\alpha $ therefore, $$\begin{aligned} & \Rightarrow 6\left[ 4-\alpha \left( 2-\alpha \right) \right] \\\ & \Rightarrow 6\left[ 4-2\alpha +{{\alpha }^{2}} \right]\ldots \ldots \ldots \left( 3 \right) \\\ \end{aligned}$$ For calculating minimum value, let us suppose $f\left( \alpha \right)={{\alpha }^{2}}-2\alpha +4$. Taking the derivative $f'\left( \alpha \right)=2\alpha -2$. Putting $f'\left( \alpha \right)=0$ we get: $\Rightarrow 2\alpha -2=0\Rightarrow \alpha -1=0$ Therefore, $\alpha =1$ for checking if its maximum or minimum value, let us again take the derivative of $f''\left( \alpha \right)$ we get: $f''\left( \alpha \right)=2$. Putting $\alpha =1$ $f''\left( 1 \right)=2\text{ }>\text{ }0$. Therefore by the second derivative test, $f\left( \alpha \right)$ is the minimum value when $\alpha =1$. Hence, our minimum value becomes, putting $\alpha =1$in (3), we get: $\Rightarrow 6\left( 4-2+1 \right)=18$. **Hence, the minimum value of $\left( \vec{c}-\left( \vec{a}\times \vec{b} \right) \right)\cdot \vec{c}$ equals 18.** **Note:** Students should take care of signs while solving problems related to vectors. While taking triple product of $\left( \vec{a}\times \vec{b} \right)\cdot \vec{c}$ if any two vector are same, the product becomes equal to zero because of the determinant property. Since, the triple product is calculated using determinant and if two rows become equal, then determinant is zero and hence, the scalar triple product is zero. It should be noted that $\vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a}$ but $\vec{a}\times \vec{b}\ne \vec{b}\times \vec{a}$.