Question
Mathematics Question on Vector Algebra
Let a = 2i^ + 5j^ - k^, b = 2i^ - 2j^ + 2k^
and c be three vectors such that
(c + i^) × (a + b + i^) = a × (c + i^) . a.c = -29,)
then c.(-2i^ + j^ + k^) is equal to :
10
5
15
12
5
Solution
Let us analyze the given conditions step by step.
Step 1: Represent the vector v
Define:
v=a+b+i^.
Substitute the given values of a and b:
v=(2i^+5j^−k^)+(2i^−2j^+2k^)+i^.
Simplify:
v=(2+2+1)i^+(5−2)j^+(−1+2)k^=5i^+3j^+k^.
Step 2: Represent c+i^ as p
Define:
p=c+i^.
Step 3: Apply the cross-product condition
The condition is:
p×v=a×p.
Rearrange:
p×v−p×a=0.
Using the distributive property of the cross product:
p×(v−a)=0.
Thus, p must be parallel to v−a, which implies:
p=λ(v−a), where λ is a scalar.
Step 4: Substitute v−a
Calculate v−a:
v−a=(5i^+3j^+k^)−(2i^+5j^−k^).
Simplify:
v−a=(5−2)i^+(3−5)j^+(1−(−1))k^=3i^−2j^+2k^.
Thus:
p=λ(3i^−2j^+2k^).
Step 5: Use the dot-product condition
The condition a⋅c=−29 can be written as:
a⋅(p−i^)=−29.
Substitute p=λ(3i^−2j^+2k^):
a⋅(λ(3i^−2j^+2k^)−i^)=−29.
Expand:
a⋅(λ3i^−λ2j^+λ2k^−i^)=−29.
Substitute a=2i^+5j^−k^:
a⋅(3λi^−2λj^+2λk^−i^)=−29.
Simplify:
(2)(3λ)+(5)(−2λ)+(−1)(2λ)−(2)(1)=−29.
Thus:
6λ−10λ−2λ−2=−29.
Solve for λ:
−6λ−2=−29⟹−6λ=−27⟹λ=627=−21.
Step 6: Compute c
Substitute c=p−i^:
c=λ(3i^−2j^+2k^)−i^.
Simplify:
c=−21(3i^−2j^+2k^)−i^.
c=−23i^+j^−k^−i^.
Combine terms:
c=−25i^+j^−k^.