Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a\vec{a} = 2i^\hat{i} + 5j^\hat{j} - k^\hat{k}, b\vec{b} = 2i^\hat{i} - 2j^\hat{j} + 2k^\hat{k}
and c\vec{c} be three vectors such that
(c\vec{c} + i^\hat{i}) ×\times (a\vec{a} + b\vec{b} + i^\hat{i}) = a\vec{a} ×\times (c\vec{c} + i^)\hat{i}) . a\vec{a}.c\vec{c} = -29,)
then c\vec{c}.(-2i^\hat{i} + j^\hat{j} + k^\hat{k}) is equal to :

A

10

B

5

C

15

D

12

Answer

5

Explanation

Solution

Let us analyze the given conditions step by step.

Step 1: Represent the vector v\vec{v}

Define:

v=a+b+i^\vec{v} = \vec{a} + \vec{b} + \hat{i}.

Substitute the given values of a\vec{a} and b\vec{b}:

v=(2i^+5j^k^)+(2i^2j^+2k^)+i^\vec{v} = (2\hat{i} + 5\hat{j} - \hat{k}) + (2\hat{i} - 2\hat{j} + 2\hat{k}) + \hat{i}.

Simplify:

v=(2+2+1)i^+(52)j^+(1+2)k^=5i^+3j^+k^\vec{v} = (2 + 2 + 1)\hat{i} + (5 - 2)\hat{j} + (-1 + 2)\hat{k} = 5\hat{i} + 3\hat{j} + \hat{k}.

Step 2: Represent c+i^\vec{c} + \hat{i} as p\vec{p}

Define:

p=c+i^\vec{p} = \vec{c} + \hat{i}.

Step 3: Apply the cross-product condition

The condition is:

p×v=a×p\vec{p} \times \vec{v} = \vec{a} \times \vec{p}.

Rearrange:

p×vp×a=0\vec{p} \times \vec{v} - \vec{p} \times \vec{a} = \vec{0}.

Using the distributive property of the cross product:

p×(va)=0\vec{p} \times (\vec{v} - \vec{a}) = \vec{0}.

Thus, p\vec{p} must be parallel to va\vec{v} - \vec{a}, which implies:

p=λ(va)\vec{p} = \lambda (\vec{v} - \vec{a}), where λ\lambda is a scalar.

Step 4: Substitute va\vec{v} - \vec{a}

Calculate va\vec{v} - \vec{a}:

va=(5i^+3j^+k^)(2i^+5j^k^)\vec{v} - \vec{a} = (5\hat{i} + 3\hat{j} + \hat{k}) - (2\hat{i} + 5\hat{j} - \hat{k}).

Simplify:

va=(52)i^+(35)j^+(1(1))k^=3i^2j^+2k^\vec{v} - \vec{a} = (5 - 2)\hat{i} + (3 - 5)\hat{j} + (1 - (-1))\hat{k} = 3\hat{i} - 2\hat{j} + 2\hat{k}.

Thus:

p=λ(3i^2j^+2k^)\vec{p} = \lambda (3\hat{i} - 2\hat{j} + 2\hat{k}).

Step 5: Use the dot-product condition

The condition ac=29\vec{a} \cdot \vec{c} = -29 can be written as:

a(pi^)=29\vec{a} \cdot (\vec{p} - \hat{i}) = -29.

Substitute p=λ(3i^2j^+2k^)\vec{p} = \lambda (3\hat{i} - 2\hat{j} + 2\hat{k}):

a(λ(3i^2j^+2k^)i^)=29\vec{a} \cdot (\lambda (3\hat{i} - 2\hat{j} + 2\hat{k}) - \hat{i}) = -29.

Expand:

a(λ3i^λ2j^+λ2k^i^)=29\vec{a} \cdot (\lambda 3\hat{i} - \lambda 2\hat{j} + \lambda 2\hat{k} - \hat{i}) = -29.

Substitute a=2i^+5j^k^\vec{a} = 2\hat{i} + 5\hat{j} - \hat{k}:

a(3λi^2λj^+2λk^i^)=29\vec{a} \cdot (3\lambda \hat{i} - 2\lambda \hat{j} + 2\lambda \hat{k} - \hat{i}) = -29.

Simplify:

(2)(3λ)+(5)(2λ)+(1)(2λ)(2)(1)=29(2)(3\lambda) + (5)(-2\lambda) + (-1)(2\lambda) - (2)(1) = -29.

Thus:

6λ10λ2λ2=296\lambda - 10\lambda - 2\lambda - 2 = -29.

Solve for λ\lambda:

6λ2=29    6λ=27    λ=276=12-6\lambda - 2 = -29 \implies -6\lambda = -27 \implies \lambda = \frac{27}{6} = -\frac{1}{2}.

Step 6: Compute c\vec{c}

Substitute c=pi^\vec{c} = \vec{p} - \hat{i}:

c=λ(3i^2j^+2k^)i^\vec{c} = \lambda (3\hat{i} - 2\hat{j} + 2\hat{k}) - \hat{i}.

Simplify:

c=12(3i^2j^+2k^)i^\vec{c} = -\frac{1}{2}(3\hat{i} - 2\hat{j} + 2\hat{k}) - \hat{i}.

c=32i^+j^k^i^\vec{c} = -\frac{3}{2}\hat{i} + \hat{j} - \hat{k} - \hat{i}.

Combine terms:

c=52i^+j^k^\vec{c} = -\frac{5}{2}\hat{i} + \hat{j} - \hat{k}.