Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=2i^3j^+4k^,b=3i^+4j^5k^\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}, \, \vec{b} = 3\hat{i} + 4\hat{j} - 5\hat{k}, and a vector c\vec{c} be such that a×(b+c)+b×c=i^+8j^+13k^.\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k}. If ac=13\vec{a} \cdot \vec{c} = 13, then (24bc)(24 - \vec{b} \cdot \vec{c}) is equal to ______.

Answer

From the given equation:

a×(b+c)+b×c=i^+8j^+13k^.\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k}.

Expanding using vector algebra:

a×b+a×c+b×c=i^+8j^+13k^.\vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k}.

It is given:

a×b=i^+8j^+13k^.\vec{a} \times \vec{b} = \hat{i} + 8\hat{j} + 13\hat{k}.

So:

a×c+b×c=0.\vec{a} \times \vec{c} + \vec{b} \times \vec{c} = \vec{0}.

Expanding further:

b×c=a×c.\vec{b} \times \vec{c} = -\vec{a} \times \vec{c}.

Using ac=13\vec{a} \cdot \vec{c} = 13, compute:

bc=[a(i^+8j^+13k^)]=22.\vec{b} \cdot \vec{c} = -\left[\vec{a} \cdot (\hat{i} + 8\hat{j} + 13\hat{k})\right] = -22.

From the determinant of bc\vec{b} \cdot \vec{c}:

24bc=46.24 - \vec{b} \cdot \vec{c} = 46.