Solveeit Logo

Question

Physics Question on physical world

Let [ε0][ \varepsilon_0 ] denote the dimensional formula of the permittivity of the vacuum and [μ0][ \mu_0 ] that of the permeability of the vacuum. If MM = mass, LL = length, TT = time and II = electric current.

A

[ε0]=[M1L3T2I][ \varepsilon_0 ] = [ M^{ - 1} L^{ - 3} T^2 I ]

B

[ε0]=[M1L3T4I2][ \varepsilon_0 ] = [ M^{ - 1} \, L^{ - 3} \, T^4 \, I^2 ]

C

[μ0]=[MLT2I2][ \mu_0 ] = [ ML \, T^{ - 2} I^{ - 2} ]

D

[μ0]=[ML2T1I][ \mu_0 ] = [ ML^2 \, T^{ - 1} \, I ]

Answer

[μ0]=[MLT2I2][ \mu_0 ] = [ ML \, T^{ - 2} I^{ - 2} ]

Explanation

Solution

F = 14πε0.q1q2r2\frac{1}{ 4 \pi \varepsilon_0} . \frac{ q_1 q_2 }{ r^2 }
[ε0]=[q1][q2][F][r2]=[IT2][MLT2][L2]=[M1L3T4I2][ \varepsilon_0 ] = \frac{ [ q_1 ] [ q_2 ] }{ [ F] [ r^2 ] } = \frac{ [ IT^2 ] }{ [ MLT^{ - 2} ] \, [ L^2 ] } = [ M^{ - 1} \, L^{ - 3} \, T^4 \, I^2 ]
Speed of light, c = 1ε0μ0\frac{1}{ \sqrt{ \varepsilon_0 \, \mu_0 }}
[μ0]=1[ε0][c]2=1[M1L3T4I2][LT1]2\therefore [ \mu_0 ] = \frac{1}{ [ \varepsilon_0 ] \, [ c]^2 } = \frac{ 1}{ [ M^{ - 1} \, L^{ - 3} \, T^4 I^2 ] \, [ LT^{ - 1} ]^2 }
= [MLT2I2][ MLT^{ - 2} \, I^{ - 2} ]