Solveeit Logo

Question

Physics Question on kinetic theory

Let vrms,vmpv_{rms}, v_{mp} and vavgv_{avg} represent the root mean square, the most probable and the average velocities respectively, in case of a gaseous system in equilibrium at certain temperature. Then, (vrms)2:(vmp)2:(vavg)2(v_{rms})^2 : (v_{mp})^2 : (v_{avg})^2 is

A

8:3π:2π8 : 3\pi : 2\pi

B

8:2π:3π8 : 2\pi : 3\pi

C

3π:2π:83\pi : 2\pi: 8

D

3:2:8 3 : 2 : 8

Answer

3π:2π:83\pi : 2\pi: 8

Explanation

Solution

vrms=3RTM,vmp=2RTM \because \:\: v_{rms} = \sqrt{\frac{3RT}{M}} , v_{mp} = \sqrt{\frac{2RT}{M}} and vavg=8RTπMv_{avg} = \sqrt{\frac{8RT}{ \pi M}}
(vrms)2:(vmp)2:(vavg)2=3RTM:2RTM:8RTπM\therefore \:\:\: (v_{rms})^2 : (v_{mp})^2 : (v_{avg})^2 = \frac{3RT}{M} : \frac{2RT}{M} : \frac{8RT}{\pi M}
= 3π:2π:83 \pi : 2 \pi : 8