Solveeit Logo

Question

Question: Let \(\upsilon\)<!-- -->1 be the frequency of the series limit of the Lyman series, \(\upsilon\)<!--...

Let υ\upsilon1 be the frequency of the series limit of the Lyman series, υ\upsilon2 be the frequency of the first line of the Lyman series, and υ\upsilon3 be the frequency of the series limit of the Balmer series :

A

υ1υ2=υ3\upsilon_{1} - \upsilon_{2} = \upsilon_{3}

B

υ2υ1=υ3\upsilon_{2} - \upsilon_{1} = \upsilon_{3}

C

υ3=1/2(υ1υ3)\upsilon_{3} = 1/2\left( \upsilon_{1} - \upsilon_{3} \right)

D

υ1+υ2=υ3\upsilon_{1} + \upsilon_{2} = \upsilon_{3}

Answer

υ1υ2=υ3\upsilon_{1} - \upsilon_{2} = \upsilon_{3}

Explanation

Solution

v=RCZ2(1n121n22)v = RCZ^{2}\left( \frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right).

}}{\mathbf{v}_{\mathbf{2}}\mathbf{= RC}\mathbf{Z}^{\mathbf{2}}\left( \frac{\mathbf{1}}{\mathbf{1}^{\mathbf{2}}}\mathbf{-}\frac{\mathbf{1}}{\mathbf{2}^{\mathbf{2}}} \right)\mathbf{= RC}\mathbf{Z}^{\mathbf{2}}\mathbf{.}}$$ $${v_{3} = RCZ^{2}\left( \frac{1}{2^{2}} - \frac{1}{\infty^{2}} \right) = RCZ^{2}. }{\therefore \upsilon_{1} - \upsilon_{2} = \upsilon_{3}.}$$