Question
Question: Let \(\upsilon\)<!-- -->1 be the frequency of the series limit of the Lyman series, \(\upsilon\)<!--...
Let υ1 be the frequency of the series limit of the Lyman series, υ2 be the frequency of the first line of the Lyman series, and υ3 be the frequency of the series limit of the Balmer series :
A
υ1−υ2=υ3
B
υ2−υ1=υ3
C
υ3=1/2(υ1−υ3)
D
υ1+υ2=υ3
Answer
υ1−υ2=υ3
Explanation
Solution
v=RCZ2(n121−n221).
}}{\mathbf{v}_{\mathbf{2}}\mathbf{= RC}\mathbf{Z}^{\mathbf{2}}\left( \frac{\mathbf{1}}{\mathbf{1}^{\mathbf{2}}}\mathbf{-}\frac{\mathbf{1}}{\mathbf{2}^{\mathbf{2}}} \right)\mathbf{= RC}\mathbf{Z}^{\mathbf{2}}\mathbf{.}}$$ $${v_{3} = RCZ^{2}\left( \frac{1}{2^{2}} - \frac{1}{\infty^{2}} \right) = RCZ^{2}. }{\therefore \upsilon_{1} - \upsilon_{2} = \upsilon_{3}.}$$