Solveeit Logo

Question

Question: Let \(\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)=l\) and \[\u...

Let limx0sec1(xsinx)=l\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)=l and limx0sec1(xtanx)=m\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)=m, then
(a) l exists but m does not
(b) m exists but l does not
(c) l and m both exist
(d) neither l nor m exists

Explanation

Solution

Hint: Relate the relation between x, sin x and tan x when x is limiting to zero. Relate it with the domain of sec1x{{\sec }^{-1}}x for existing limits.

Here, we have given the limits as
limx0sec1(xsinx)=l....(i)\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)=l....\left( i \right)
And, limx0sec1(xtanx)=m.....(ii)\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)=m.....\left( ii \right)
First, we need to know about the domain of sec1x{{\sec }^{-1}}x i.e. (,1][1,)\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right).
Now, try to relate values of xsinx\dfrac{x}{\sin x} and xtanx\dfrac{x}{\tan x} for limit x0x\to 0, if value inside of sec1(){{\sec }^{-1}}\left( {} \right) will lie in (1,1)\left( -1,1 \right) then limit will not exist and if value inside the bracket lies in (,1][1,)\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right). Hence limit will exist.
Let us first relate xsinx\dfrac{x}{\sin x}.
One can relate x with sin x and tan x by calculating tangent equations of tan x and sin x at (0, 0) and relate it with y = x.
We know that one can find tangent at any point lying on the curve by calculating slope at that point. Let the point be (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and curve is y = f (x) then tangent at (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) can be given by yy1=dydx(x1,y1)(xx1)y-{{y}_{1}}={{\left. \dfrac{dy}{dx} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}\left( x-{{x}_{1}} \right)
Tangent equation for sin x at (0, 0) is
y0=ddx(sinx)(0,0)(x0)y-0={{\left. \dfrac{d}{dx}\left( \sin x \right) \right|}_{\left( 0,0 \right)}}\left( x-0 \right)
y=cosx(0,0)(x) [ddxsinx=cosx]y={{\left. \cos x \right|}_{\left( 0,0 \right)}}\left( x \right)\text{ }\left[ \because \dfrac{d}{dx}\sin x=\cos x \right]
y=xy=x
Hence, y=xy=x is tangent for y=sinxy=\sin x.
Draw graph of x and sin x in one coordinate plane as follows:


Now for the second case i.e. xtanx\dfrac{x}{\tan x}, we get the tangent equation of tan x at (0, 0) is
y0=dydx(0,0)(x0)y-0={{\left. \dfrac{dy}{dx} \right|}_{\left( 0,0 \right)}}\left( x-0 \right)
y=sec2x(0,0)(x) [ddxtanx=sec2x]y={{\left. {{\sec }^{2}}x \right|}_{\left( 0,0 \right)}}\left( x \right)\text{ }\left[ \dfrac{d}{dx}\tan x={{\sec }^{2}}x \right]
y=xy=x
Hence, y = x is tangent for y=tanxy=\tan x as well.
Let us draw the graph of x and tan x as follows:
Now from the graphs, we can relate for xsinx\dfrac{x}{\sin x} that is:
Case 1: x0+x\to {{0}^{+}}
We observe x > sin x
Hence, xsinx>1\dfrac{x}{\sin x}>1
Case 2: x0x\to {{0}^{-}}
Here, sin x has a higher positive magnitude than x. Hence, if we put a negative sign to both x and sin x, then
x>sinxx>\sin x
xsinx>1\dfrac{x}{\sin x}>1
Hence, from case 1 and case 2, we get
If limx0,\lim x\to 0, then xsinx>1....(iii)\dfrac{x}{\sin x}>1....\left( iii \right)
Similarly, let us relate x and tan x for x0x\to 0
Case 1: x0+x\to {{0}^{+}}
x < tan x
xtanx<1\dfrac{x}{\tan x}<1
Case 2: x0x\to {{0}^{-}}
x < tan x
xtanx<1\dfrac{x}{\tan x}<1
Hence, for x0x\to 0, we have xtanx<1....(iv)\dfrac{x}{\tan x}<1....\left( iv \right)
Now, for limit ‘l’ from equation (i), we get
l=limx0sec1(xsinx)l=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)
As we have xsinx>1\dfrac{x}{\sin x}>1 from equation (iii) and domain of sec1x{{\sec }^{-1}}x is (,1][1,)\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right) as explained in the starting. Hence, we can put limx0\lim x\to 0 to the given relation.
So, l=limx0sec1(xsinx)l=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right) will exist.
For limit ‘m’ from equation (ii), we get
m=limx0sec1(xtanx)m=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)
We have already calculated that xtanx<1\dfrac{x}{\tan x}<1 from equation (iv) and domain of sec1x{{\sec }^{-1}}x is (,1][1,)\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right). Hence the given limit will not exist.
Hence, option (a) is the correct answer to the given problem.

Note: One can directly put limx0xsinx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=1 and limx0xtanx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x}=1 as we generally use but that will be wrong for the given expression. As the exact value of limx0xsinx\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x} and limx0xtanx\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x} is not exactly 1, it’s the limiting value of the given expressions. Hence, be careful with these kinds of problems. Relating x with tan x and sin x by calculating tangent at (0, 0) for sin x and tan x is the key point of the question.