Solveeit Logo

Question

Question: Let $U_n = \int_{0}^{\frac{\pi}{2}} x \sin^n x dx$, then find the value of $\left( \frac{100U_{10}-1...

Let Un=0π2xsinnxdxU_n = \int_{0}^{\frac{\pi}{2}} x \sin^n x dx, then find the value of (100U101U8)\left( \frac{100U_{10}-1}{U_8} \right).

Answer

90

Explanation

Solution

To find the value of (100U101U8)\left( \frac{100U_{10}-1}{U_8} \right), we first need to establish a reduction formula for Un=0π2xsinnxdxU_n = \int_{0}^{\frac{\pi}{2}} x \sin^n x dx. We use integration by parts with u=xsinn1xu = x \sin^{n-1} x and dv=sinxdxdv = \sin x dx. This gives du=(sinn1x+x(n1)sinn2xcosx)dxdu = \left( \sin^{n-1} x + x(n-1)\sin^{n-2} x \cos x \right) dx and v=cosxv = -\cos x.

Applying the integration by parts formula udv=uvvdu\int u \, dv = uv - \int v \, du: Un=[xsinn1x(cosx)]0π20π2(cosx)(sinn1x+x(n1)sinn2xcosx)dxU_n = \left[ x \sin^{n-1} x (-\cos x) \right]_0^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} (-\cos x) \left( \sin^{n-1} x + x(n-1)\sin^{n-2} x \cos x \right) dx

The boundary term [xsinn1xcosx]0π2\left[ -x \sin^{n-1} x \cos x \right]_0^{\frac{\pi}{2}} evaluates to 0.

So, Un=0π2cosxsinn1xdx+(n1)0π2xsinn2xcos2xdxU_n = \int_{0}^{\frac{\pi}{2}} \cos x \sin^{n-1} x dx + (n-1) \int_{0}^{\frac{\pi}{2}} x \sin^{n-2} x \cos^2 x dx.

The first integral 0π2cosxsinn1xdx\int_{0}^{\frac{\pi}{2}} \cos x \sin^{n-1} x dx can be solved using the substitution t=sinxt = \sin x, which yields 1n\frac{1}{n}.

The second integral can be rewritten as (n1)0π2xsinn2x(1sin2x)dx=(n1)(0π2xsinn2xdx0π2xsinnxdx)=(n1)(Un2Un)(n-1) \int_{0}^{\frac{\pi}{2}} x \sin^{n-2} x (1-\sin^2 x) dx = (n-1) \left( \int_{0}^{\frac{\pi}{2}} x \sin^{n-2} x dx - \int_{0}^{\frac{\pi}{2}} x \sin^n x dx \right) = (n-1) (U_{n-2} - U_n).

Substituting these results back into the expression for UnU_n: Un=1n+(n1)(Un2Un)U_n = \frac{1}{n} + (n-1) (U_{n-2} - U_n) Un=1n+(n1)Un2(n1)UnU_n = \frac{1}{n} + (n-1) U_{n-2} - (n-1) U_n nUn=1n+(n1)Un2n U_n = \frac{1}{n} + (n-1) U_{n-2}.

Now, we apply this reduction formula for n=10n=10: 10U10=110+(101)U10210 U_{10} = \frac{1}{10} + (10-1) U_{10-2} 10U10=110+9U810 U_{10} = \frac{1}{10} + 9 U_8.

To obtain the numerator 100U101100U_{10}-1, we multiply the equation by 10: 10×(10U10)=10×(110+9U8)10 \times (10 U_{10}) = 10 \times \left( \frac{1}{10} + 9 U_8 \right) 100U10=1+90U8100 U_{10} = 1 + 90 U_8.

Rearranging this equation gives: 100U101=90U8100 U_{10} - 1 = 90 U_8.

Finally, we substitute this into the expression we need to evaluate: 100U101U8=90U8U8\frac{100U_{10}-1}{U_8} = \frac{90 U_8}{U_8}.

Since U8=0π2xsin8xdxU_8 = \int_{0}^{\frac{\pi}{2}} x \sin^8 x dx is positive for x(0,π2)x \in (0, \frac{\pi}{2}), we can cancel U8U_8: 90U8U8=90\frac{90 U_8}{U_8} = 90.