Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let u,vu , v and ww be vectors such that u+v+w=0.u + v + w = 0 . If u=3,v=4| u |=3,| v |=4 and w=5| w |=5 then uv+vw+wuu \cdot v + v \cdot w + w \cdot u is equal to

A

0

B

-25

C

25

D

50

Answer

-25

Explanation

Solution

Given, u=3,v=4| u |=3,| v |=4 and w=5| w |=5
Also, u+v+w=0u + v + w = 0
On squaring both sides, we get
u2+v2+w2+2(uv+vw+wu)=0| u |^{2}+| v |^{2}+| w |^{2}+2( u \cdot v + v \cdot w + w \cdot u )=0
32+42+52+2(uv+vw+wu)=0\Rightarrow 3^{2}+4^{2}+5^{2}+2( u \cdot v + v \cdot w + w \cdot u )=0
9+16+25+2(uv+vw+wu)=0\Rightarrow 9+16+25+2( u \cdot v + v \cdot w + w \cdot u )=0
uv+vw+wu=502=25\Rightarrow u \cdot v + v \cdot w + w \cdot u =-\frac{50}{2}=-25