Question
Mathematics Question on Coordinate Geometry
Let two straight lines drawn from the origin O intersect the line 3x+4y=12 at the points P and Q such that △OPQ is an isosceles triangle and ∠POQ=90∘. If l=OP2+PQ2+QO2, then the greatest integer less than or equal to l is:
A
44
B
48
C
46
D
42
Answer
46
Explanation
Solution
The line equation:
3x+4y=12intersects points P and Q at coordinates:
P(rcosθ,rsinθ),Q(rcos(90∘+θ),rsin(90∘+θ))=(−rsinθ,rcosθ)Substituting into the line equation:
3(rcosθ)+4(rsinθ)=12 ⟹r(3cosθ+4sinθ)=12(1) 3(rsinθ)+4(rcosθ)=12 ⟹r(−3sinθ+4cosθ)=12(2)Finding r:
Squaring and adding equations (1) and (2):
(r12)2+(r12)2=(3cosθ+4sinθ)2+(−3sinθ+4cosθ)2 2(r12)2=25 ⟹r2=25288 ⟹r=25288=5122Finding ℓ=OP2+PQ2+OQ2:
OP2=r2,OQ2=r2To find PQ2, we use the distance formula between P(rcosθ,rsinθ) and Q(−rsinθ,rcosθ):
PQ2=(rcosθ+rsinθ)2+(rsinθ−rcosθ)2 =r2(cosθ+sinθ)2+r2(sinθ−cosθ)2 =r2(1+1)=2r2Thus:
ℓ=OP2+PQ2+OQ2=r2+2r2+r2=4r2Substituting r2=25288:
ℓ=4×25288=251152=46.08Final Answer:
The greatest integer less than or equal to ℓ is:
⌊46.08⌋=46