Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let two straight lines drawn from the origin OO intersect the line 3x+4y=123x + 4y = 12 at the points PP and QQ such that OPQ\triangle OPQ is an isosceles triangle and POQ=90\angle POQ = 90^\circ. If l=OP2+PQ2+QO2l = OP^2 + PQ^2 + QO^2, then the greatest integer less than or equal to ll is:

A

44

B

48

C

46

D

42

Answer

46

Explanation

Solution

Sol Fig.

The line equation:

3x+4y=123x + 4y = 12

intersects points PP and QQ at coordinates:

P(rcosθ,rsinθ),Q(rcos(90+θ),rsin(90+θ))=(rsinθ,rcosθ)P(r \cos \theta, r \sin \theta), \quad Q(r \cos (90^\circ + \theta), r \sin (90^\circ + \theta)) = (-r \sin \theta, r \cos \theta)

Substituting into the line equation:

3(rcosθ)+4(rsinθ)=123(r \cos \theta) + 4(r \sin \theta) = 12     r(3cosθ+4sinθ)=12(1)\implies r(3 \cos \theta + 4 \sin \theta) = 12 \tag{1} 3(rsinθ)+4(rcosθ)=123(r \sin \theta) + 4(r \cos \theta) = 12     r(3sinθ+4cosθ)=12(2)\implies r(-3 \sin \theta + 4 \cos \theta) = 12 \tag{2}

Finding rr:

Squaring and adding equations (1) and (2):

(12r)2+(12r)2=(3cosθ+4sinθ)2+(3sinθ+4cosθ)2\left( \frac{12}{r} \right)^2 + \left( \frac{12}{r} \right)^2 = (3 \cos \theta + 4 \sin \theta)^2 + (-3 \sin \theta + 4 \cos \theta)^2 2(12r)2=252 \left( \frac{12}{r} \right)^2 = 25     r2=28825\implies r^2 = \frac{288}{25}     r=28825=1225\implies r = \sqrt{\frac{288}{25}} = \frac{12 \sqrt{2}}{5}

Finding =OP2+PQ2+OQ2\ell = OP^2 + PQ^2 + OQ^2:

OP2=r2,OQ2=r2OP^2 = r^2, \quad OQ^2 = r^2

To find PQ2PQ^2, we use the distance formula between P(rcosθ,rsinθ)P(r \cos \theta, r \sin \theta) and Q(rsinθ,rcosθ)Q(-r \sin \theta, r \cos \theta):

PQ2=(rcosθ+rsinθ)2+(rsinθrcosθ)2PQ^2 = (r \cos \theta + r \sin \theta)^2 + (r \sin \theta - r \cos \theta)^2 =r2(cosθ+sinθ)2+r2(sinθcosθ)2= r^2(\cos \theta + \sin \theta)^2 + r^2(\sin \theta - \cos \theta)^2 =r2(1+1)=2r2= r^2(1 + 1) = 2r^2

Thus:

=OP2+PQ2+OQ2=r2+2r2+r2=4r2\ell = OP^2 + PQ^2 + OQ^2 = r^2 + 2r^2 + r^2 = 4r^2

Substituting r2=28825r^2 = \frac{288}{25}:

=4×28825=115225=46.08\ell = 4 \times \frac{288}{25} = \frac{1152}{25} = 46.08

Final Answer:

The greatest integer less than or equal to \ell is:

46.08=46\lfloor 46.08 \rfloor = 46