Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let ABC\triangle ABC be a triangle of area 15215\sqrt{2} and the vectors AB=i^+2j^7k^,BC=ai^+bj^+ck^,andAC=6i^+dj^2k^,d>0. \overrightarrow{AB} = \hat{i} + 2\hat{j} - 7\hat{k}, \quad \overrightarrow{BC} = a\hat{i} + b\hat{j} + c\hat{k}, \quad \text{and} \quad \overrightarrow{AC} = 6\hat{i} + d\hat{j} - 2\hat{k}, \, d > 0.Then the square of the length of the largest side of the triangle ABC\triangle ABC is

Answer

Given vectors:
AB=i^+2j^7k^,AC=6i^+dj^2k^\overrightarrow{AB} = \hat{i} + 2\hat{j} - 7\hat{k}, \quad \overrightarrow{AC} = 6\hat{i} + d\hat{j} - 2\hat{k}
The cross product AB×AC\overrightarrow{AB} \times \overrightarrow{AC} gives the area of the triangle ABCABC using the formula:
Area=12AB×AC\text{Area} = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|
Given that the area is 15215\sqrt{2}:
152=12AB×AC15\sqrt{2} = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|
Thus:
AB×AC=302\left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = 30\sqrt{2}

Calculating the cross product:
AB×AC=i^j^k^ 127 6d2\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 1 & 2 & -7 \\\ 6 & d & -2 \end{vmatrix}

=i^(2×2(7)×d)j^(1×2(7)×6)+k^(1×d2×6)= \hat{i}(2 \times -2 - (-7) \times d) - \hat{j}(1 \times -2 - (-7) \times 6) + \hat{k}(1 \times d - 2 \times 6)

Simplifying: AB×AC=i^(4+7d)j^(2+42)+k^(d12)\overrightarrow{AB} \times \overrightarrow{AC} = \hat{i}(-4 + 7d) - \hat{j}(-2 + 42) + \hat{k}(d - 12)

=(7d4)i^40j^+(d12)k^= (7d - 4)\hat{i} - 40\hat{j} + (d - 12)\hat{k}

The magnitude of the cross product is given by:
AB×AC=(7d4)2+(40)2+(d12)2\left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \sqrt{(7d - 4)^2 + (-40)^2 + (d - 12)^2}

Equating this to 30230\sqrt{2}: (7d4)2+1600+(d12)2=302\sqrt{(7d - 4)^2 + 1600 + (d - 12)^2} = 30\sqrt{2}

Squaring both sides: (7d4)2+1600+(d12)2=1800(7d - 4)^2 + 1600 + (d - 12)^2 = 1800
Solving this equation gives the value of dd.

To find the square of the length of the largest side, we calculate:
AB2=12+22+(7)2=1+4+49=54|\overrightarrow{AB}|^2 = 1^2 + 2^2 + (-7)^2 = 1 + 4 + 49 = 54
Similarly, the length of AC\overrightarrow{AC} is calculated.
Thus, the square of the length of the largest side is: 5454