Question
Question: Let triangle $ABC (\angle C = \frac{\pi}{2})$ is right angled triangle of area equal to 12 units lie...
Let triangle ABC(∠C=2π) is right angled triangle of area equal to 12 units lie in xy plane so that its perpendicular sides are parallel to coordinates axes and the medians through A and B lie on the lines y=3x+1 and y=mx+2(m∈I) respectively. If the coordinates of vertex C is (a,b) then ∣ab∣1 is equal to

27/50
Solution
Let the vertices be A(xA,yA), B(xB,yB), and C(a,b). Since ∠C=2π and the perpendicular sides are parallel to the coordinate axes, the sides AC and BC are parallel to the coordinate axes. Then we have two cases: Case 1: A=(a,yA),B=(xB,b),C=(a,b) Case 2: A=(xA,b),B=(a,yB),C=(a,b)
We are given that the median through A lies on the line y=3x+1 and the median through B lies on the line y=mx+2. Let's analyze Case 2: A=(xA,b),B=(a,yB),C=(a,b). The midpoint of BC is MA(a,2yB+b). The median through A connects A(xA,b) to MA(a,2yB+b). Since this median lies on the line y=3x+1, we have b=3xA+1 and 2yB+b=3a+1. The midpoint of AC is MB(2xA+a,b). The median through B connects B(a,yB) to MB(2xA+a,b). Since this median lies on the line y=mx+2, we have yB=ma+2 and b=m(2xA+a)+2.
From b=3xA+1, we get xA=3b−1. From 2yB+b=3a+1, we get yB+b=6a+2. From yB=ma+2, we get ma+2+b=6a+2, so b=a(6−m). From b=m(2xA+a)+2, we get 2b=mxA+ma+4, so mxA=2b−ma−4. Substituting xA=3b−1, we have m(3b−1)=2b−ma−4, so m(b−1)=6b−3ma−12. Then mb−m=6b−3ma−12, so b(m−6)=−3ma−12+m. Substituting b=a(6−m), we have a(6−m)(m−6)=−3ma−12+m, so −a(m−6)2=−3ma−12+m. −a(m2−12m+36)=−3ma−12+m, so −am2+12am−36a=−3ma−12+m. −am2+15am−36a+12−m=0, so a(−m2+15m−36)=m−12, so a(−(m−3)(m−12))=m−12. If m=12, then a(−(m−3))=1, so a=m−3−1=3−m1. Then b=a(6−m)=3−m6−m.
Since area = 12, 21∣xA−a∣∣yB−b∣=12, so ∣xA−a∣∣yB−b∣=24. xA=3b−1=33−m6−m−1=33−m6−m−3+m=3(3−m)3=3−m1. xA−a=3−m1−3−m1=0. This implies xA=a, which is not possible.
If m=12, then 0=m−12=0, so m=12. b=3xA+1. yB=12a+2. 2yB+b=3a+1⟹yB+b=6a+2. b=12(2xA+a)+2⟹b=6xA+6a+2. b−2=6xA+6a. yB+b=6a+2, so yB=6a+2−b. b=3xA+1, so xA=3b−1. 2b=12(2xA+a)+4, so 2b=6xA+6a+4, so b−2=3xA+3a. xA=3b−1, so b−2=b−1+3a, so 3a=−1, so a=−1/3. Then yB=12a+2=12(−1/3)+2=−4+2=−2. b=a(6−m)=(−1/3)(6−12)=(−1/3)(−6)=2. Area = 21∣xA−a∣∣yB−b∣=21∣3b−1−a∣∣ma+2−b∣=12. If a=−1/3 and b=2, then xA=32−1=31. yB=12a+2=12(−1/3)+2=−4+2=−2. Area = 21∣1/3−(−1/3)∣∣−2−2∣=21∣2/3∣∣−4∣=21(2/3)(4)=4/3. This contradicts the area being 12.
Let's consider A=(x,b), B=(a,y). Area is ∣x−a∣∣y−b∣=24. MA=(a,2y+b). MB=(2x+a,b). A on y=3x+1: b=3x+1. B on y=mx+2: y=ma+2. MA on y=3x+1: 2y+b=3a+1. MB on y=mx+2: b=m(2x+a)+2. b=3x+1, so x=(b−1)/3. y=ma+2. 2ma+2+b=3a+1, so ma+2+b=6a+2, so b=6a−ma=a(6−m). b=m(2x+a)+2, so 2b=mx+ma+4, so 2b=m3b−1+ma+4, so 6b=mb−m+3ma+12. Then b(6−m)=3ma+12−m. a(6−m)2=3ma+12−m. a(36−12m+m2)=3ma+12−m, so 36a−12ma+am2=3ma+12−m, so am2−15ma+36a+m−12=0. a(m2−15m+36)=−m+12, so a(m−3)(m−12)=−(m−12). If m=12, this is always true. If m=12, a(m−3)=−1, so a=m−3−1=3−m1. Then b=a(6−m)=3−m6−m. ∣x−a∣∣y−b∣=24, so ∣3b−1−a∣∣ma+2−b∣=24. x−a=3b−1−a=33−m6−m−1−3−m1=3(3−m)3−3−m1=0. So impossible.
Let x=a+2,y=b−12. xy=24. Then b=3(a+2)+1=3a+7. Median B connects B(a,b−12) to (2a+2+a,b)=(a+1,b). Slope 112=12, so m=12. Then y=12x+2. b=12(a+1)+2=12a+14. 3a+7=12a+14, so 9a=−7, so a=−7/9. Then b=14/3. ∣ab∣=98/27, so 1/∣ab∣=27/98. If x=a−2,y=b+12. b=3(a−2)+1=3a−5. b+12=12a+2, so b=12a−10. 3a−5=12a−10, so 9a=5, so a=5/9. b=−10/3. ∣ab∣=50/27, so 1/∣ab∣=27/50.
Final Answer: The final answer is 5027