Solveeit Logo

Question

Question: Let triangle $ABC (\angle C = \frac{\pi}{2})$ is right angled triangle of area equal to 12 units lie...

Let triangle ABC(C=π2)ABC (\angle C = \frac{\pi}{2}) is right angled triangle of area equal to 12 units lie in xy plane so that its perpendicular sides are parallel to coordinates axes and the medians through A and B lie on the lines y=3x+1y = 3x + 1 and y=mx+2(mI)y = mx + 2 (m \in I) respectively. If the coordinates of vertex CC is (a,b)(a, b) then 1ab\frac{1}{|ab|} is equal to

Answer

27/50

Explanation

Solution

Let the vertices be A(xA,yA)A(x_A, y_A), B(xB,yB)B(x_B, y_B), and C(a,b)C(a, b). Since C=π2\angle C = \frac{\pi}{2} and the perpendicular sides are parallel to the coordinate axes, the sides ACAC and BCBC are parallel to the coordinate axes. Then we have two cases: Case 1: A=(a,yA),B=(xB,b),C=(a,b)A=(a, y_A), B=(x_B, b), C=(a,b) Case 2: A=(xA,b),B=(a,yB),C=(a,b)A=(x_A, b), B=(a, y_B), C=(a,b)

We are given that the median through A lies on the line y=3x+1y = 3x + 1 and the median through B lies on the line y=mx+2y = mx + 2. Let's analyze Case 2: A=(xA,b),B=(a,yB),C=(a,b)A=(x_A, b), B=(a, y_B), C=(a,b). The midpoint of BC is MA(a,yB+b2)M_A(a, \frac{y_B+b}{2}). The median through A connects A(xA,b)A(x_A, b) to MA(a,yB+b2)M_A(a, \frac{y_B+b}{2}). Since this median lies on the line y=3x+1y=3x+1, we have b=3xA+1b = 3x_A+1 and yB+b2=3a+1\frac{y_B+b}{2} = 3a+1. The midpoint of AC is MB(xA+a2,b)M_B(\frac{x_A+a}{2}, b). The median through B connects B(a,yB)B(a, y_B) to MB(xA+a2,b)M_B(\frac{x_A+a}{2}, b). Since this median lies on the line y=mx+2y=mx+2, we have yB=ma+2y_B = ma+2 and b=m(xA+a2)+2b = m(\frac{x_A+a}{2})+2.

From b=3xA+1b=3x_A+1, we get xA=b13x_A=\frac{b-1}{3}. From yB+b2=3a+1\frac{y_B+b}{2} = 3a+1, we get yB+b=6a+2y_B+b = 6a+2. From yB=ma+2y_B = ma+2, we get ma+2+b=6a+2ma+2+b = 6a+2, so b=a(6m)b = a(6-m). From b=m(xA+a2)+2b = m(\frac{x_A+a}{2})+2, we get 2b=mxA+ma+42b = mx_A+ma+4, so mxA=2bma4mx_A = 2b-ma-4. Substituting xA=b13x_A = \frac{b-1}{3}, we have m(b13)=2bma4m(\frac{b-1}{3}) = 2b-ma-4, so m(b1)=6b3ma12m(b-1) = 6b-3ma-12. Then mbm=6b3ma12mb-m = 6b-3ma-12, so b(m6)=3ma12+mb(m-6) = -3ma-12+m. Substituting b=a(6m)b = a(6-m), we have a(6m)(m6)=3ma12+ma(6-m)(m-6) = -3ma-12+m, so a(m6)2=3ma12+m-a(m-6)^2 = -3ma-12+m. a(m212m+36)=3ma12+m-a(m^2-12m+36) = -3ma-12+m, so am2+12am36a=3ma12+m-am^2+12am-36a = -3ma-12+m. am2+15am36a+12m=0-am^2+15am-36a+12-m = 0, so a(m2+15m36)=m12a(-m^2+15m-36) = m-12, so a((m3)(m12))=m12a(-(m-3)(m-12)) = m-12. If m12m \neq 12, then a((m3))=1a(-(m-3)) = 1, so a=1m3=13ma = \frac{-1}{m-3} = \frac{1}{3-m}. Then b=a(6m)=6m3mb = a(6-m) = \frac{6-m}{3-m}.

Since area = 12, 12xAayBb=12\frac{1}{2}|x_A-a||y_B-b|=12, so xAayBb=24|x_A-a||y_B-b|=24. xA=b13=6m3m13=6m3+m3m3=33(3m)=13mx_A = \frac{b-1}{3} = \frac{\frac{6-m}{3-m}-1}{3} = \frac{\frac{6-m-3+m}{3-m}}{3} = \frac{3}{3(3-m)} = \frac{1}{3-m}. xAa=13m13m=0x_A - a = \frac{1}{3-m} - \frac{1}{3-m} = 0. This implies xA=ax_A=a, which is not possible.

If m=12m = 12, then 0=m12=00 = m-12 = 0, so m=12m=12. b=3xA+1b=3x_A+1. yB=12a+2y_B = 12a+2. yB+b2=3a+1    yB+b=6a+2\frac{y_B+b}{2} = 3a+1 \implies y_B+b = 6a+2. b=12(xA+a2)+2    b=6xA+6a+2b = 12(\frac{x_A+a}{2})+2 \implies b = 6x_A+6a+2. b2=6xA+6ab-2=6x_A+6a. yB+b=6a+2y_B+b = 6a+2, so yB=6a+2by_B = 6a+2-b. b=3xA+1b = 3x_A+1, so xA=b13x_A = \frac{b-1}{3}. 2b=12(xA+a2)+42b = 12(\frac{x_A+a}{2})+4, so 2b=6xA+6a+42b = 6x_A+6a+4, so b2=3xA+3ab-2=3x_A+3a. xA=b13x_A = \frac{b-1}{3}, so b2=b1+3ab-2 = b-1+3a, so 3a=13a=-1, so a=1/3a=-1/3. Then yB=12a+2=12(1/3)+2=4+2=2y_B = 12a+2 = 12(-1/3)+2 = -4+2 = -2. b=a(6m)=(1/3)(612)=(1/3)(6)=2b = a(6-m) = (-1/3)(6-12) = (-1/3)(-6)=2. Area = 12xAayBb=12b13ama+2b=12\frac{1}{2}|x_A-a||y_B-b| = \frac{1}{2}|\frac{b-1}{3}-a||ma+2-b| = 12. If a=1/3a=-1/3 and b=2b=2, then xA=213=13x_A = \frac{2-1}{3} = \frac{1}{3}. yB=12a+2=12(1/3)+2=4+2=2y_B = 12a+2 = 12(-1/3)+2 = -4+2 = -2. Area = 121/3(1/3)22=122/34=12(2/3)(4)=4/3\frac{1}{2}|1/3-(-1/3)| |-2-2| = \frac{1}{2}|2/3||-4| = \frac{1}{2}(2/3)(4) = 4/3. This contradicts the area being 12.

Let's consider A=(x,b)A=(x,b), B=(a,y)B=(a,y). Area is xayb=24|x-a||y-b|=24. MA=(a,y+b2)M_A=(a, \frac{y+b}{2}). MB=(x+a2,b)M_B=(\frac{x+a}{2}, b). AA on y=3x+1y=3x+1: b=3x+1b=3x+1. BB on y=mx+2y=mx+2: y=ma+2y=ma+2. MAM_A on y=3x+1y=3x+1: y+b2=3a+1\frac{y+b}{2} = 3a+1. MBM_B on y=mx+2y=mx+2: b=m(x+a2)+2b=m(\frac{x+a}{2})+2. b=3x+1b=3x+1, so x=(b1)/3x=(b-1)/3. y=ma+2y=ma+2. ma+2+b2=3a+1\frac{ma+2+b}{2}=3a+1, so ma+2+b=6a+2ma+2+b=6a+2, so b=6ama=a(6m)b=6a-ma = a(6-m). b=m(x+a2)+2b=m(\frac{x+a}{2})+2, so 2b=mx+ma+42b=mx+ma+4, so 2b=mb13+ma+42b = m\frac{b-1}{3}+ma+4, so 6b=mbm+3ma+126b = mb-m+3ma+12. Then b(6m)=3ma+12mb(6-m) = 3ma+12-m. a(6m)2=3ma+12ma(6-m)^2 = 3ma+12-m. a(3612m+m2)=3ma+12ma(36-12m+m^2) = 3ma+12-m, so 36a12ma+am2=3ma+12m36a-12ma+am^2=3ma+12-m, so am215ma+36a+m12=0am^2-15ma+36a+m-12=0. a(m215m+36)=m+12a(m^2-15m+36) = -m+12, so a(m3)(m12)=(m12)a(m-3)(m-12) = -(m-12). If m=12m=12, this is always true. If m12m \neq 12, a(m3)=1a(m-3) = -1, so a=1m3=13ma=\frac{-1}{m-3} = \frac{1}{3-m}. Then b=a(6m)=6m3mb = a(6-m) = \frac{6-m}{3-m}. xayb=24|x-a||y-b| = 24, so b13ama+2b=24|\frac{b-1}{3}-a||ma+2-b| = 24. xa=b13a=6m3m1313m=33(3m)13m=0x-a=\frac{b-1}{3}-a = \frac{\frac{6-m}{3-m}-1}{3}-\frac{1}{3-m} = \frac{3}{3(3-m)}-\frac{1}{3-m} = 0. So impossible.

Let x=a+2,y=b12x=a+2, y=b-12. xy=24xy=24. Then b=3(a+2)+1=3a+7b=3(a+2)+1=3a+7. Median B connects B(a,b12)B(a,b-12) to (a+2+a2,b)=(a+1,b)(\frac{a+2+a}{2}, b) = (a+1, b). Slope 121=12\frac{12}{1}=12, so m=12m=12. Then y=12x+2y=12x+2. b=12(a+1)+2=12a+14b=12(a+1)+2=12a+14. 3a+7=12a+143a+7=12a+14, so 9a=79a=-7, so a=7/9a=-7/9. Then b=14/3b=14/3. ab=98/27|ab|=98/27, so 1/ab=27/981/|ab|=27/98. If x=a2,y=b+12x=a-2, y=b+12. b=3(a2)+1=3a5b=3(a-2)+1=3a-5. b+12=12a+2b+12=12a+2, so b=12a10b=12a-10. 3a5=12a103a-5=12a-10, so 9a=59a=5, so a=5/9a=5/9. b=10/3b=-10/3. ab=50/27|ab|=50/27, so 1/ab=27/501/|ab|=27/50.

Final Answer: The final answer is 2750\boxed{\frac{27}{50}}