Question
Mathematics Question on Vector Algebra
Let three vectors a=αi^+4j^+2k^,
b=5i^+3j^+4k^,
c=xi^+yj^+zk^ from a triangle such that c=a−b and the area of the triangle is 56. If α is a positive real number, then ∣c∣2 is:
16
14
12
10
14
Solution
Step 1: Expression for c
The vector c is given as:
c=a−b.
Substitute a=αi^+4j^+2k^ and b=5i^+3j^+4k^:
c=(α−5)i^+(4−3)j^+(2−4)k^.
Thus:
c=(α−5)i^+j^−2k^.
Step 2: Area of the triangle
The area of the triangle is given as:
Area=21∣a×c∣.
Substitute Area=56:
21∣a×c∣=56.
∣a×c∣=106.
Step 3: Cross product a×c
The cross product a×c is given by:
a×c=i^ α α−5j^41k^2−2.
Expanding the determinant:
a×c=i^4 12−2−j^α α−52−2+k^α α−541.
Calculate each minor:
1. For i^: 4 12−2=(4)(−2)−(2)(1)=−8−2=−10.
2. For j^: α α−52−2=(α)(−2)−(α−5)(2)=−2α−2α+10=−4α+10.
3. For k^: α α−541=(α)(1)−(α−5)(4)=α−4α+20=−3α+20.
Thus:
a×c=−10i^−(−4α+10)j^+(−3α+20)k^.
a×c=−10i^+(4α−10)j^+(−3α+20)k^.
Step 4: Magnitude of a×c
The magnitude is:
∣a×c∣=(−10)2+(4α−10)2+(−3α+20)2.
∣a×c∣=100+(16α2−80α+100)+(9α2−120α+400).
∣a×c∣=25α2−200α+600.
Set ∣a×c∣=106:
25α2−200α+600=106.
Square both sides:
25α2−200α+600=600.
25α(α−8)=0.
Since α>0, α=8.
Step 5: Calculate ∣c∣2
Substitute α=8 into c:
c=3i^+j^−2k^.
The magnitude squared is:
∣c∣2=32+(1)2+(−2)2.
∣c∣2=9+1+4=14.
Final Answer: Option (2).