Solveeit Logo

Question

Question: Let three positive numbers $a, b, c$ are in geometric progression, such that $a, b+8, c$ are in arit...

Let three positive numbers a,b,ca, b, c are in geometric progression, such that a,b+8,ca, b+8, c are in arithmetic progression and a,b+8,c+64a, b+8, c+64 are in geometric progression. If the arithmetic mean of a,b,ca, b, c is kk, then 313k\frac{3}{13}k is equal to

Answer

4

Explanation

Solution

Solution:

Let the numbers in the geometric progression be

a,  b=ar,  c=ar2.a,\;b=ar,\;c=ar^2.
  1. Since a,  b+8,  ca,\;b+8,\;c are in arithmetic progression,
b+8=a+c2ar+8=a+ar22.b+8=\frac{a+c}{2} \quad \Longrightarrow \quad ar+8=\frac{a+ar^2}{2}.

Multiplying by 2,

2ar+16=a(1+r2)a(1+r22r)=16.(1)2ar+16 = a(1+r^2) \quad \Longrightarrow \quad a(1+r^2-2r)=16. \quad (1)
  1. Since a,  b+8,  c+64a,\;b+8,\;c+64 are in geometric progression,
(b+8)2=a(c+64).(b+8)^2=a(c+64).

Substitute b=arb=ar and c=ar2c=ar^2:

(ar+8)2=a(ar2+64).(ar+8)^2 = a(ar^2+64).

Expanding,

a2r2+16ar+64=a2r2+64a.a^2r^2+16ar+64 = a^2r^2+64a.

Cancel a2r2a^2r^2 from both sides:

16ar+64=64a16ar=64a64.16ar+64 = 64a \quad \Longrightarrow \quad 16ar = 64a-64.

Dividing by 16 (and noting a>0a>0),

ar=4a4a(4r)=4,ar = 4a-4 \quad \Longrightarrow \quad a(4-r)=4, a=44r.(2)a = \frac{4}{4-r}. \quad (2)
  1. Substitute the value of aa from (2) into (1):
44r(1+r22r)=16.\frac{4}{4-r}(1+r^2-2r)=16.

Multiply both sides by 4r4-r:

4(1+r22r)=16(4r),4(1+r^2-2r)=16(4-r), 1+r22r=4(4r)=164r.1+r^2-2r =4(4-r)=16-4r.

Rearrange:

r22r+1=164r,r^2-2r+1 =16-4r, r2+2r15=0.r^2+2r-15=0.

Factorizing,

(r+5)(r3)=0.(r+5)(r-3)=0.

Since r>0r>0, we choose r=3r=3.

  1. Now, find aa using (2):
a=443=4.a=\frac{4}{4-3} = 4.

Then,

b=ar=4×3=12,c=ar2=4×9=36.b=ar=4\times 3=12,\quad c=ar^2=4\times 9=36.

The arithmetic mean kk is:

k=a+b+c3=4+12+363=523.k=\frac{a+b+c}{3}=\frac{4+12+36}{3}=\frac{52}{3}.

Thus,

313k=313×523=5213=4.\frac{3}{13}k=\frac{3}{13}\times \frac{52}{3}=\frac{52}{13}=4.

Core Explanation Summary:

  • Expressed a,b,ca,\, b,\, c in GP.
  • Used AP condition on a,b+8,ca,\, b+8,\, c to get equation (1).
  • Used GP condition on a,b+8,c+64a,\, b+8,\, c+64 to get equation (2).
  • Solved for rr and aa, then computed b,cb,\, c and kk.
  • Calculated 313k=4\frac{3}{13}k=4.