Solveeit Logo

Question

Differential Equations Question on Differential Equations

Let θ(π4,π2)\theta \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right). Consider the functions
u:R2(0,0)Randv:R2(0,0)Ru : \mathbb{R}^2 - \\{ (0, 0) \\} \to \mathbb{R} \quad \text{and} \quad v : \mathbb{R}^2 - \\{ (0, 0) \\} \to \mathbb{R}
given by
u(x,y)=xxx2+y2andv(x,y)=y+yx2+y2.u(x,y) = x - \frac{x}{x^2 + y^2} \quad \text{and} \quad v(x,y) = y + \frac{y}{x^2 + y^2}.
The value of the determinant uxuy vxvy\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} at the point (cosθ,sinθ)(\cos \theta, \sin \theta) is equal to

A

4sinθ.4 \sin \theta.

B

4cosθ.4 \cos \theta.

C

(4 \sin^2 \theta.\

D

4cos2θ.4 \cos^2 \theta.

Answer

4cos2θ.4 \cos^2 \theta.

Explanation

Solution

The correct option is (D): 4cos2θ.4 \cos^2 \theta.