Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

Let θ(0,π4)andt1=(tanθ)tanθ,t2=(tanθ)cotθ,t3=(cotθ)tanθandt4=(cotθ)cotθ,then\theta \in\Bigg(0,\frac{\pi}{4}\Bigg) and t_1=(tan \theta)^{tan \theta}, t_2=(tan \theta)^{cot \theta},t_3=(cot \theta)^{tan \theta} and t_4=(cot \theta)^{cot \theta}, then

A

t1>t2>t3>t4t_1 > t_2 > t_3 >t_4

B

t4>t3>t1>t2t_4 > t_3 > t_1 >t_2

C

t3>t1>t2>t4t_3 > t_1 > t_2 >t_4

D

t2>t3>t1>t4t_2 > t_3 > t_1 >t_4

Answer

t4>t3>t1>t2t_4 > t_3 > t_1 >t_2

Explanation

Solution

The correct option is:(B): t 4​>t 3​>t 1​>t 2​.

Given: t 1​=tan θ tan θ

This implies: log t 1​=tan θ log(tan θ)=tan θ log(cot θ)

Which further leads to: t 1​=−(cot θ tan θ)

Thus: t 2​ and �1>�2 t 1​>t 2​

Similarly, t 4​=cot θ cot θ

This implies: log⁡ log t 4​=cot θ log(cot θ)=cot θ log(tan θ)

Which further leads to: t 4​=−(cot θ tan θ)

Thus: t 4​=− t 3​ and t 4​>t 3​

In the range θ ∈(0,24 π ​),cotθ>tanθ

⇒ t4​>t3​>t1​>t2​.
Therefore, (b) is the answer.