Solveeit Logo

Question

Question: Let there be a spherical symmetric charge distribution with charge density varying as r(r) = r<sub>0...

Let there be a spherical symmetric charge distribution with charge density varying as r(r) = r0rR\frac{r}{R}upto r = R and r(r) = 0 for r > R, where r is the distance from the origin. The electric field at on a distance r (r < R) from the origin is given by-

A

ρ0r24ε0R\frac{\rho_{0}r^{2}}{4\varepsilon_{0}R}

B

ρ0r4ε0R\frac{\rho_{0}r}{4\varepsilon_{0}R}

C

ρ0r4ε0R\frac{\rho_{0}r^{4}}{\varepsilon_{0}R}

D

ρ0r2ε0R\frac{\rho_{0}r^{2}}{\varepsilon_{0}R}

Answer

ρ0r24ε0R\frac{\rho_{0}r^{2}}{4\varepsilon_{0}R}

Explanation

Solution

\oint . ds\overrightarrow { \mathrm { ds } } = ….(1)

qin = = 0rρ0rR4πr2dr\int _ { 0 } ^ { \mathrm { r } } \rho _ { 0 } \frac { \mathrm { r } } { \mathrm { R } } 4 \pi \mathrm { r } ^ { 2 } \mathrm { dr } = 4πρ0R\frac { 4 \pi \rho _ { 0 } } { R } r44\frac { r ^ { 4 } } { 4 }

=, from (1)

E.4pr2 = πρ0r4ε0R\frac { \pi \rho _ { 0 } r ^ { 4 } } { \varepsilon _ { 0 } R } \ E =