Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let the vectors a,b,c\vec{a},\vec{b},\vec{c} given as a1i^+a2j^+a3k^+b1i^+b2j^+b3k^,c1i^+c2j^+c3k^a_{1}\hat{i}+a_{2}\hat{j}+a_{3}\hat{k}+b_{1}\hat{i}+b_{2}\hat{j}+b_{3}\hat{k},c_{1}\hat{i}+c_{2}\hat{j}+c_{3}\hat{k}.Then show that=a×(b+c)=a×b+a×ct=\vec{a}\times (\vec{b}+\vec{c})=\vec{a}\times \vec{b}+\vec{a}\times \vec{c}

Answer

We have,
a=a1i^+a2j^+a3k^,b=b1i^+b2j^+b3k^,c=c1i^+c2j^+c3k^\vec{a}=a_{1}\hat{i}+a_{2}\hat{j}+a_{3}\hat{k},\vec{b}=b_{1}\hat{i}+b_{2}\hat{j}+b_{3}\hat{k},\vec{c}=c_{1}\hat{i}+c_{2}\hat{j}+c_{3}\hat{k}
(b+c)=(b1+c1)i^+(b2+c2)j^+((b3+c3)k^(\vec{b}+\vec{c})=(b_{1}+c_{1})\hat{i}+(b_{2}+c_{2})\hat{j}+((b_{3}+c_{3})\hat{k}
Now,a×(b+c)i^j^k^ a1a2a3\b1+c1b2+c2b3+c3\vec{a}\times (\vec{b}+\vec{c})\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\\ a_{1} & a_2 & a_3\\\b_1+c_1&b_2+c_2&b_3+c_3\end{vmatrix}
=i^=\hat{i}[a2(b2+c3)-a3(b2+c2)]-=j^=\hat{j}[a1(b3+c3)-a3(b1+c1)+k^\hat{k}[a1(b2+c2)-a2(b1+c1)]
=i^=\hat{i}[a2b3+a2c3-a3b2-a3c2]+j^\hat{j}[-a1b3-a1c3+a3b1+a3c1]+k^\hat{k}[a1b2+a1c2-a2b1-a2c1]...(1)
a×b\vec{a}\times\vec{b}=i^j^k^ a1a2a3\b1b2b3\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\\ a_1 & a_2 & a_3 \\\b_1&b_2&b_3\end{vmatrix}
=i^=\hat{i}[a2b3-a3b2]+j^\hat{j}[b1a3-a1b3]+k^\hat{k}[a1b2-a2b1]...(2)
a×c\vec{a}\times\vec{c}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\\ a_1 & a_2 & a_3 \\\c_1&c_2&c_3\end{vmatrix}
=i^\hat{i}[a2c3-a3c2]+j^\hat{j}[a3c1-a1c3]+k^+\hat{k}[a1c2-a2c1]...(3)
On adding (2)and(3),we get:
(a×b\vec{a}\times\vec{b})+(a×c\vec{a}\times\vec{c})=i^=\hat{i}[a2b3+a2c3-a3b2-a3c2]+j^\hat{j}[b1a3+a3c1-a1b3-a1c3]+k^\hat{k}[a1b2+a1c2-a2b1-a2c1]...(4)
Now,from (1)and(4),we have:
a×(b+c)\vec{a}\times (\vec{b}+\vec{c})=a×b+a×c\vec{a}\times\vec{b}+\vec{a}\times\vec{c}
Hence,the given result is proved.