Question
Mathematics Question on Vector Algebra
Let the vectors a,b,c given as a1i^+a2j^+a3k^+b1i^+b2j^+b3k^,c1i^+c2j^+c3k^.Then show that=a×(b+c)=a×b+a×c
We have,
a=a1i^+a2j^+a3k^,b=b1i^+b2j^+b3k^,c=c1i^+c2j^+c3k^
(b+c)=(b1+c1)i^+(b2+c2)j^+((b3+c3)k^
Now,a×(b+c)i^ a1\b1+c1j^a2b2+c2k^a3b3+c3
=i^[a2(b2+c3)-a3(b2+c2)]-=j^[a1(b3+c3)-a3(b1+c1)+k^[a1(b2+c2)-a2(b1+c1)]
=i^[a2b3+a2c3-a3b2-a3c2]+j^[-a1b3-a1c3+a3b1+a3c1]+k^[a1b2+a1c2-a2b1-a2c1]...(1)
a×b=i^ a1\b1j^a2b2k^a3b3
=i^[a2b3-a3b2]+j^[b1a3-a1b3]+k^[a1b2-a2b1]...(2)
a×c=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\\ a_1 & a_2 & a_3 \\\c_1&c_2&c_3\end{vmatrix}
=i^[a2c3-a3c2]+j^[a3c1-a1c3]+k^[a1c2-a2c1]...(3)
On adding (2)and(3),we get:
(a×b)+(a×c)=i^[a2b3+a2c3-a3b2-a3c2]+j^[b1a3+a3c1-a1b3-a1c3]+k^[a1b2+a1c2-a2b1-a2c1]...(4)
Now,from (1)and(4),we have:
a×(b+c)=a×b+a×c
Hence,the given result is proved.