Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let the vectors a\vec{a} and b\vec{b} be such that |a\vec{a}|=3=3 and |b\vec{b}|=23=\sqrt{\frac{2}{3}} ,then a×b\vec{a}\times\vec{b} is a unit vector,if the angle between a\vec{a} and b\vec{b} is

A

π6\frac{\pi}{6}

B

π4\frac{\pi}{4}

C

π3\frac{\pi}{3}

D

π2\frac{\pi}{2}

Answer

π4\frac{\pi}{4}

Explanation

Solution

It is given that |a\vec{a}|=3=3,and |b\vec{b}|=23=\sqrt{\frac{2}{3}}
We know that \vec{a}\times \vec{b}$$=|\vec{a}||\vec{b}|sin\theta\hat{n} ,where n^\hat{n} is a unit vector perpendicular to both a\vec{a} and b\vec{b} and θ is the angle between a  and  b\vec{a}\space and\space\vec{b}.
Now,a×b\vec{a}\times \vec{b} is a unit vector if |a×b\vec{a}\times \vec{b}|=1=1
|a×b\vec{a}\times \vec{b}|=1
absinθn^=1|\vec{a}||\vec{b}|sin\theta\hat{n}=1
3×23×sinθ=1⇒3×\sqrt{\frac{2}{3}}×sinθ=1
sinθ=12⇒sinθ=\frac{1}{\sqrt{2}}
θ=π4⇒θ=\frac{\pi}{4}
Hence,a×b\vec{a}\times \vec{b} is a unit vector if the angle between a  and  b  is  π4.\vec{a}\space and\space \vec{b} \space is \space \frac{\pi}{4}.
The correct answer is B.