Solveeit Logo

Question

Question: Let the vectors \(\overrightarrow{a}=\widehat{i}+\widehat{j}+\sqrt{2}\widehat{k}\), \(\overrightarro...

Let the vectors a=i^+j^+2k^\overrightarrow{a}=\widehat{i}+\widehat{j}+\sqrt{2}\widehat{k}, b=b1i^+b2j^+2k^\overrightarrow{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+\sqrt{2}\widehat{k} and c=5i^+j^+2k^\overrightarrow{c}=5\widehat{i}+\widehat{j}+\sqrt{2}\widehat{k} be three vectors such that the projection vector of b\overrightarrow{b}on a\overrightarrow{a} is a\overrightarrow{a}. If a+b\overrightarrow{a}+\overrightarrow{b} is perpendicular to c\overrightarrow{c}, then b\left| \overrightarrow{b} \right| is equal to:
(a) 22\sqrt{22}
(b) 4
(c) 34\sqrt{34}
(d) 6

Explanation

Solution

First, before proceeding for this, we must know the dot product of the two vectors is given by the formula as cosθ=abab\cos \theta =\dfrac{\overrightarrow{a}\centerdot \overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|}. Then, we will use the formula for the projection of b\overrightarrow{b} on a\overrightarrow{a} where a^\widehat{a} is unit vector defined by a^=aa\widehat{a}=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|} is given by abaa^\dfrac{\overrightarrow{a}\centerdot \overrightarrow{b}}{\left| \overrightarrow{a} \right|}\widehat{a}. Then, we are also given in the question that a+b\overrightarrow{a}+\overrightarrow{b} is perpendicular to c\overrightarrow{c}and by using it in the formula cosθ=abab\cos \theta =\dfrac{\overrightarrow{a}\centerdot \overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|}, we get the final result by using b=b12+b22\left| \overrightarrow{b} \right|=\sqrt{{{b}_{1}}^{2}+{{b}_{2}}^{2}}.

Complete step-by-step solution:
In this question, we are supposed to find the value of b\left| \overrightarrow{b} \right| when a=i^+j^+2k^\overrightarrow{a}=\widehat{i}+\widehat{j}+\sqrt{2}\widehat{k}, b=b1i^+b2j^+2k^\overrightarrow{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+\sqrt{2}\widehat{k} and c=5i^+j^+2k^\overrightarrow{c}=5\widehat{i}+\widehat{j}+\sqrt{2}\widehat{k} be three vectors such that the projection vector of b\overrightarrow{b}on a\overrightarrow{a} is a\overrightarrow{a} and a+b\overrightarrow{a}+\overrightarrow{b} is perpendicular to c\overrightarrow{c}.
So, before proceeding for this, we must know the dot product of the two vectors is given by the formula as:
cosθ=abab\cos \theta =\dfrac{\overrightarrow{a}\centerdot \overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|}
Then, we are given with the condition that the projection of b\overrightarrow{b} on a\overrightarrow{a} is a\overrightarrow{a}.
So, we will use the formula for the projection of b\overrightarrow{b} on a\overrightarrow{a} where a^\widehat{a} is unit vector defined by a^=aa\widehat{a}=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|} is given by:
abaa^\dfrac{\overrightarrow{a}\centerdot \overrightarrow{b}}{\left| \overrightarrow{a} \right|}\widehat{a}
So, by substituting the value of a^\widehat{a} in above formula, we get:
aba×aa\dfrac{\overrightarrow{a}\centerdot \overrightarrow{b}}{\left| \overrightarrow{a} \right|}\times \dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}
Now, we are a=given in the question that the value of above expression is a\overrightarrow{a}, so by equating it, we get:
aba×aa=a aba2=1 ab=a2 \begin{aligned} & \dfrac{\overrightarrow{a}\centerdot \overrightarrow{b}}{\left| \overrightarrow{a} \right|}\times \dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}=\overrightarrow{a} \\\ & \Rightarrow \dfrac{\overrightarrow{a}\centerdot \overrightarrow{b}}{{{\left| \overrightarrow{a} \right|}^{2}}}=1 \\\ & \Rightarrow \overrightarrow{a}\centerdot \overrightarrow{b}={{\left| \overrightarrow{a} \right|}^{2}} \\\ \end{aligned}
Then, by substituting the values of vectors b\overrightarrow{b} and a\overrightarrow{a} given in the question, we get:
(i^+j^+2k^)(b1i^+b2j^+2k^)=(12+12+22)2 b1+b2+2×2=1+1+2 b1+b2+2=4 b1+b2=2....(i) \begin{aligned} & \left( \widehat{i}+\widehat{j}+\sqrt{2}\widehat{k} \right)\centerdot \left( {{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+\sqrt{2}\widehat{k} \right)={{\left( \sqrt{{{1}^{2}}+{{1}^{2}}+{{\sqrt{2}}^{2}}} \right)}^{2}} \\\ & \Rightarrow {{b}_{1}}+{{b}_{2}}+\sqrt{2}\times \sqrt{2}=1+1+2 \\\ & \Rightarrow {{b}_{1}}+{{b}_{2}}+2=4 \\\ & \Rightarrow {{b}_{1}}+{{b}_{2}}=2....\left( i \right) \\\ \end{aligned}
Then, we are also given in the question that a+b\overrightarrow{a}+\overrightarrow{b} is perpendicular to c\overrightarrow{c} and by using it in the formula cosθ=abab\cos \theta =\dfrac{\overrightarrow{a}\centerdot \overrightarrow{b}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|}, we get:
(a+b)ca+bc=cos90 (a+b)c=0 \begin{aligned} & \dfrac{\left( \overrightarrow{a}+\overrightarrow{b} \right)\centerdot \overrightarrow{c}}{\left| \overrightarrow{a}+\overrightarrow{b} \right|\left| \overrightarrow{c} \right|}=\cos {{90}^{\circ }} \\\ & \Rightarrow \left( \overrightarrow{a}+\overrightarrow{b} \right)\centerdot \overrightarrow{c}=0 \\\ \end{aligned}
Then, by substituting the value of all the vectors in the above expression, we get:
(i^+j^+2k^+b1i^+b2j^+2k^)(5i^+j^+2k^)=0 ((1+b1)i^+(1+b2)j^+22k^)(5i^+j^+2k^)=0 ((1+b1)5+(1+b2)1+22×2)=0 5+5b1+1+b2+4=0 5b1+b2=10.....(ii) \begin{aligned} & \left( \widehat{i}+\widehat{j}+\sqrt{2}\widehat{k}+{{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+\sqrt{2}\widehat{k} \right)\centerdot \left( 5\widehat{i}+\widehat{j}+\sqrt{2}\widehat{k} \right)=0 \\\ & \Rightarrow \left( \left( 1+{{b}_{1}} \right)\widehat{i}+\left( 1+{{b}_{2}} \right)\widehat{j}+2\sqrt{2}\widehat{k} \right)\centerdot \left( 5\widehat{i}+\widehat{j}+\sqrt{2}\widehat{k} \right)=0 \\\ & \Rightarrow \left( \left( 1+{{b}_{1}} \right)5+\left( 1+{{b}_{2}} \right)1+2\sqrt{2}\times \sqrt{2} \right)=0 \\\ & \Rightarrow 5+5{{b}_{1}}+1+{{b}_{2}}+4=0 \\\ & \Rightarrow 5{{b}_{1}}+{{b}_{2}}=-10.....\left( ii \right) \\\ \end{aligned}
Now, by substituting the value of b1=2b2{{b}_{1}}=2-{{b}_{2}} from equation (i) into equation (ii), we get:
5(2b2)+b2=10 105b2+b2=10 4b2=20 b2=204 b2=5 \begin{aligned} & 5\left( 2-{{b}_{2}} \right)+{{b}_{2}}=-10 \\\ & \Rightarrow 10-5{{b}_{2}}+{{b}_{2}}=-10 \\\ & \Rightarrow -4{{b}_{2}}=-20 \\\ & \Rightarrow {{b}_{2}}=\dfrac{-20}{-4} \\\ & \Rightarrow {{b}_{2}}=5 \\\ \end{aligned}
Then, by substituting the value of b2{{b}_{2}} as 5 in equation (i), we get:
b1+5=2 b1=3 \begin{aligned} & {{b}_{1}}+5=2 \\\ & \Rightarrow {{b}_{1}}=-3 \\\ \end{aligned}
So, we need to get the value of magnitude of vector b is given by:
b=b12+b22\left| \overrightarrow{b} \right|=\sqrt{{{b}_{1}}^{2}+{{b}_{2}}^{2}}
Now, by substituting the value of b1{{b}_{1}}as -3 and b2{{b}_{2}}as 5, we get:
b=(3)2+52 b=9+25 b=34 \begin{aligned} & \left| \overrightarrow{b} \right|=\sqrt{{{\left( -3 \right)}^{2}}+{{5}^{2}}} \\\ & \Rightarrow \left| \overrightarrow{b} \right|=\sqrt{9+25} \\\ & \Rightarrow \left| \overrightarrow{b} \right|=\sqrt{34} \\\ \end{aligned}
So, we get the value of b\left| \overrightarrow{b} \right| as34\sqrt{34}.
Hence, option (c) is correct.

Note: Now, to solve these types of the questions we need to know some of the other methods to solve the two-variable equations. So, the other two methods are the elimination method and cross multiplication method to get the answers of b1{{b}_{1}} and b2{{b}_{2}}.