Solveeit Logo

Question

Question: Let the vectors **a**, **b**, **c** and **d** be such that \(( \mathbf { a } \times \mathbf { b } ) ...

Let the vectors a, b, c and d be such that (a×b)×(c×d)=0( \mathbf { a } \times \mathbf { b } ) \times ( \mathbf { c } \times \mathbf { d } ) = \mathbf { 0 }. Let P1P _ { 1 } and P2P _ { 2 } be planes determined by pair of vectors a,b\mathbf { a } , \mathbf { b } and c,d\mathbf { c } , \mathbf { d } respectively. Then the angle between P1P _ { 1 } and P2P _ { 2 } is

A
B

π4\frac { \pi } { 4 }

C

π3\frac { \pi } { 3 }

D

π2\frac { \pi } { 2 }

Answer
Explanation

Solution

(a×b)×(c×d)=( \mathbf { a } \times \mathbf { b } ) \times ( \mathbf { c } \times \mathbf { d } ) =0 ̃ is parallel to

Hence plane P1P _ { 1 } , determined by vectors a,b\mathbf { a } , \mathbf { b } is parallel to the plane P2P _ { 2 } determined by c,d\mathbf { c } , \mathbf { d }

\therefore Angle between P1P _ { 1 } and P2P _ { 2 } = 0 (As the planes P1P _ { 1 } and P2P _ { 2 } are parallel).