Question
Question: Let the value of f(x) be \[{{f}_{k}}x=\dfrac{1}{k}\left( \text{si}{{\text{n}}^{\text{k}}}\text{x+co}...
Let the value of f(x) be fkx=k1(sinkx+coskx) where x∈R and R≥1 then the value of f4(x)−f6(x) equals to
& A.\dfrac{1}{6} \\\ & B.\dfrac{1}{3} \\\ & C.\dfrac{1}{4} \\\ & D.\dfrac{1}{12} \\\ \end{aligned}$$Solution
To solve this question, we will first calculate the value of f4(x) and value of f6(x) then subtract them. In between we will use the identity as (a2+b2)=(a+b)2−2ab and a3+b3=(a+b)3−3ab(a+b)
Complete step by step answer:
Given that, fkx=k1(sinkx+coskx)
Where x∈R and R≥1
Consider k = 4 in above equation, we get:
f4x=41(sin4x+cos4x)
We have a identity given as (a2+b2)=(a+b)2−2ab
Let a=sin2x and b=cos2x and using identity stated above, we get:
{{f}_{4}}x=\dfrac{1}{4}\left\\{ {{\left( \text{si}{{\text{n}}^{2}}\text{x+co}{{\text{s}}^{2}}\text{x} \right)}^{2}}-2\text{si}{{\text{n}}^{2}}\text{xco}{{\text{s}}^{2}}\text{x} \right\\}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}
Now, we have trigonometric identity given as:
sin2x+cos2x=1
Using this above, we get: