Solveeit Logo

Question

Question: Let the unit vectors \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\) be the p...

Let the unit vectors a\overrightarrow{a}, b\overrightarrow{b}, c\overrightarrow{c} be the position vectors of the vertices of a triangle ABC. If F\overrightarrow{F} is the position vector of the mid point of the line segment joining its orthocentre and centroid then (a\overrightarrow{a}F\overrightarrow{F})2 + (b\overrightarrow{b}F\overrightarrow{F})2 + (c\overrightarrow{c}F\overrightarrow{F})2 =

A

1

B

2

C

3

D

None of these

Answer

3

Explanation

Solution

Let the circumcentre of the triangle be the origin.

Ž orthocentre is a\overrightarrow{a}+ b\overrightarrow{b}+ c\overrightarrow{c}and the centroid is a+b+c3\frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{3}

Ž F = 23\frac{2}{3} (a\overrightarrow{a}+ b\overrightarrow{b}+ c\overrightarrow{c})

Ž (a\overrightarrow{a}F\overrightarrow{F})2 + (b\overrightarrow{b}F\overrightarrow{F})2 + (c\overrightarrow{c}F\overrightarrow{F})2

=19\frac{1}{9} [(a\overrightarrow{a}– 2(b\overrightarrow{b}+c\overrightarrow{c})2 ) + (b\overrightarrow{b}– 2(a\overrightarrow{a}+c\overrightarrow{c})2) + (c\overrightarrow{c}–2 (a\overrightarrow{a}+b\overrightarrow{b})2)]

= 19\frac{1}{9} (27) = 3