Solveeit Logo

Question

Question: Let the unit vectors \(\overrightarrow{A}\) and \(\overrightarrow{B}\) be perpendicular and the unit...

Let the unit vectors A\overrightarrow{A} and B\overrightarrow{B} be perpendicular and the unit

vector C\overrightarrow{C} be inclined at an angle q to both A\overrightarrow{A}and B\overrightarrow{B}. If C = aA\overrightarrow{A}+bB\overrightarrow{B}+g(A\overrightarrow{A} × B\overrightarrow{B}) then

A

a = b

B

g2= 1– 2a2

C

g2 = – cos 2q

D

b2=1+cos2θ2\frac{1 + \cos 2\theta}{2}

Answer

g2= 1– 2a2

Explanation

Solution

= αAA+βBA+γA(A×B)=α\alpha \overrightarrow { \mathrm { A } } \cdot \overrightarrow { \mathrm { A } } + \beta \overrightarrow { \mathrm { B } } \cdot \overrightarrow { \mathrm { A } } + \gamma \overrightarrow { \mathrm { A } } \cdot ( \overrightarrow { \mathrm { A } } \times \overrightarrow { \mathrm { B } } ) = \alpha or a = cos q also =

Ž b = cos q again = 2CA+βBC+γC(A×B)2 \overrightarrow { \mathrm { C } } \cdot \overrightarrow { \mathrm { A } } + \beta \overrightarrow { \mathrm { B } } \cdot \overrightarrow { \mathrm { C } } + \gamma \overrightarrow { \mathrm { C } } \cdot ( \overrightarrow { \mathrm { A } } \times \overrightarrow { \mathrm { B } } )

= a cosq + b cos q + g2

or 1 = 2a cos q + g2 Ž 1 = 2a2 + g2