Question
Question: Let the unit vectors **a** and**b** be perpendicular and the unit vector **c** be inclined at an ang...
Let the unit vectors a andb be perpendicular and the unit vector c be inclined at an angle θ to both a and b. If c=αa+βb+γ(a×b), then
A
α=β=cosθ,γ2=cos2θ
B
α=β=cosθ,γ2=−cos2θ
C
α=cosθ,β=sinθ,γ2=cos2θ
D
None of these
Answer
α=β=cosθ,γ2=−cos2θ
Explanation
Solution
We have, ∣a∣=∣b∣=1
a⋅b=0; (as
c=αa+βb+γ(a×b) ......(i)
Taking dot product by a,
̃ ∣a∣.∣c∣cosθ=α.1+0+0 ̃ 1.| c∣⋅cosθ=α
As ∣c∣=1 ; ∴ α=cosθ
Taking dot product of (i) by b
b⋅c=b⋅a+β∣b∣2+γ[baab]
̃
∴ β=1.1⋅cosθ=cosθ
∣c∣2=1 ̃ α2+β2+γ2=1
̃ cos2θ+cos2θ+γ2=1
∴ γ2=1−2cos2θ=−cos2θ
Hence, α=β=cosθ,γ2=−cos2θ