Solveeit Logo

Question

Question: Let the unit vectors **a** and**b** be perpendicular and the unit vector **c** be inclined at an ang...

Let the unit vectors a andb be perpendicular and the unit vector c be inclined at an angle θ\theta to both a and b. If c=αa+βb+γ(a×b)\mathbf { c } = \alpha \mathbf { a } + \beta \mathbf { b } + \gamma ( \mathbf { a } \times \mathbf { b } ), then

A

α=β=cosθ\alpha = \beta = \cos \theta,γ2=cos2θ\gamma ^ { 2 } = \cos 2 \theta

B

α=β=cosθ,γ2=cos2θ\alpha = \beta = \cos \theta , \gamma ^ { 2 } = - \cos 2 \theta

C

α=cosθ,β=sinθ,γ2=cos2θ\alpha = \cos \theta , \beta = \sin \theta , \gamma ^ { 2 } = \cos 2 \theta

D

None of these

Answer

α=β=cosθ,γ2=cos2θ\alpha = \beta = \cos \theta , \gamma ^ { 2 } = - \cos 2 \theta

Explanation

Solution

We have, a=b=1| \mathbf { a } | = | \mathbf { b } | = 1

ab=0\mathbf { a } \cdot \mathbf { b } = 0; (as

c=αa+βb+γ(a×b)\mathbf { c } = \alpha \mathbf { a } + \beta \mathbf { b } + \gamma ( \mathbf { a } \times \mathbf { b } ) ......(i)

Taking dot product by a\mathbf { a },

̃ a.ccosθ=α.1+0+0| \mathbf { a } | . | \mathbf { c } | \cos \theta = \alpha .1 + 0 + 0 ̃ 1.| ccosθ=α\mathbf { c } \mid \cdot \cos \theta = \alpha

As c=1| \mathbf { c } | = 1 ; \therefore α=cosθ\alpha = \cos \theta

Taking dot product of (i) by b\mathbf { b }

bc=ba+βb2+γ[baab]\mathbf { b } \cdot \mathbf { c } = \mathbf { b } \cdot \mathbf { a } + \beta | \mathbf { b } | ^ { 2 } + \gamma [ \mathbf { b } \mathbf { a } \mathbf { a } \mathbf { b } ]

̃

\therefore β=1.1cosθ=cosθ\beta = 1.1 \cdot \cos \theta = \cos \theta

c2=1| \mathbf { c } | ^ { 2 } = 1 ̃ α2+β2+γ2=1\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 1

̃ cos2θ+cos2θ+γ2=1\cos ^ { 2 } \theta + \cos ^ { 2 } \theta + \gamma ^ { 2 } = 1

\therefore γ2=12cos2θ=cos2θ\gamma ^ { 2 } = 1 - 2 \cos ^ { 2 } \theta = - \cos 2 \theta

Hence, α=β=cosθ,γ2=cos2θ\alpha = \beta = \cos \theta , \gamma ^ { 2 } = - \cos 2 \theta