Solveeit Logo

Question

Mathematics Question on Ellipse

Let the tangents at the points P and Q on the ellipse

x22+y24=1 meet at the point R(2,222).\begin{array}{l} \frac{x^2}{2}+\frac{y^2}{4}=1\ \text{meet at the point}\ R\left(\sqrt{2},2\sqrt{2}-2\right).\end{array}

If S is the focus of the ellipse on its negative major axis, then SP 2 + SQ 2 is equal to ________.

Answer

Ex22+y24=1E≡\frac{x^2}{2}+\frac{y^2}{4}=1
Ty=mx±2m2+4\begin{array}{l} T\equiv y=mx\pm \sqrt{2m^2+4}\end{array}passes through (2,222)(\sqrt2,2\sqrt2−2)

 (222m2)=±2m2+4\begin{array}{l} \Rightarrow\ \left(2\sqrt{2}-2-m\sqrt{2}\right)=\pm\sqrt{2m^2+4} \end{array}

2m22m2(222)+4(322)=2m2+4\begin{array}{l} \Rightarrow 2m^2-2m\sqrt{2}\left(2\sqrt{2}-2\right)+4\left(3-2\sqrt{2}\right)=2m^2+4\end{array}

 22m(222)=412+82\begin{array}{l} \Rightarrow\ -2\sqrt{2}m\left(2\sqrt{2}-2\right)=4-12+8\sqrt{2}\end{array}

 42m(21)=8(21)\begin{array}{l} \Rightarrow\ -4\sqrt{2}m\left(\sqrt{2}-1\right)=8\left(\sqrt{2}-1\right)\end{array}

 m=2 and m\begin{array}{l} \Rightarrow\ m=-\sqrt{2}\text{ and }m\rightarrow\infty\end{array}

Tangents are x=2 and y=2x+8\begin{array}{l}\therefore\text{Tangents are}~ x=\sqrt{2}\text{ and }y=-\sqrt{2}x+\sqrt{8} \end{array}

 P(2,0) and Q(1,2)\begin{array}{l} \therefore\ P\left(\sqrt{2},0\right)\text{ and }Q\left(1,\sqrt{2}\right)\end{array}and S=(0,2)\begin{array}{l} S=\left(0,-\sqrt{2}\right)\end{array}

(PS)2+(QS)2=4+9=13\begin{array}{l}\therefore \left(PS\right)^2 + \left(QS\right)^2 = 4 + 9 = 13\end{array}