Solveeit Logo

Question

Question: Let the tangent at point P of the curve \({{x}^{2m}}{{y}^{\dfrac{n}{2}}}={{a}^{\dfrac{4m+n}{2}}}\) m...

Let the tangent at point P of the curve x2myn2=a4m+n2{{x}^{2m}}{{y}^{\dfrac{n}{2}}}={{a}^{\dfrac{4m+n}{2}}} meets the x-axis and the y-axis at A and B, respectively. If AP:PB=nλmAP:PB=\dfrac{n}{\lambda m}, where P lies between A and B, then find the value of λ\lambda
[a] 4
[b] 3
[c] -4
[d] -3

Explanation

Solution

Take logarithm on both sides of the equation and differentiate with respect to x, Hence find the expression for dydx\dfrac{dy}{dx}. Hence find the slope of the tangent at a point P(x1,y1)P\left( {{x}_{1}},{{y}_{1}} \right) on the given curve and hence find the equation of the tangent. Determine the coordinates of points of intersection of the tangent with the axis. Hence determine the ratio in which P divides AB.
Alternatively form the equation of the family of the curves whose tangent at point P meets x-axis at A and B and satisfies AP: PB =nλm=\dfrac{n}{\lambda m}. Solve the differential equation and compare with the given equation. Hence find the value of λ\lambda .

Complete step-by-step answer:


We have x2myn2=a4m+n2{{x}^{2m}}{{y}^{\dfrac{n}{2}}}={{a}^{\dfrac{4m+n}{2}}}
Taking log on both sides, we get
log(x2myn2)=log(a4m+n2)\log \left( {{x}^{2m}}{{y}^{\dfrac{n}{2}}} \right)=\log \left( {{a}^{\dfrac{4m+n}{2}}} \right)
Using logmn=logm+logn\log mn=\log m+\log n and log(an)=nloga\log \left( {{a}^{n}} \right)=n\log a, we get
2mlogx+n2logy=4m+n2loga2m\log x+\dfrac{n}{2}\log y=\dfrac{4m+n}{2}\log a
Differentiating both sides of the equation, we get
2m1x+n21ydydx=02m\dfrac{1}{x}+\dfrac{n}{2}\dfrac{1}{y}\dfrac{dy}{dx}=0
Subtracting 2mx\dfrac{2m}{x} from both sides of the equation, we get
n2ydydx=2mx\dfrac{n}{2y}\dfrac{dy}{dx}=\dfrac{-2m}{x}
Multiplying both sides of the equation by 2yn\dfrac{2y}{n}, we get
dydx=4mynx\dfrac{dy}{dx}=\dfrac{-4my}{nx}
Hence the slope of the tangent at  P(x1,y1)\text{ }P\left( {{x}_{1}},{{ y }_{1}} \right) is given by m=dydxx=x1,y=y1=4my1nx1m={{\left. \dfrac{dy}{dx} \right|}_{x={{x}_{1}},y={{ y }_{1}}}}=\dfrac{-4m{{y}_{1}}}{n{{x}_{1}}}
Hence the equation of the tangent is given by
yy1=4my1nx1(xx1)y-{{y}_{1}}=\dfrac{-4m{{y}_{1}}}{n{{x}_{1}}}\left( x-{{x}_{1}} \right)
At point A, we have y = 0
Hence, we have
y1=4my1nx1(xx1) nx1=4m(xx1) \begin{aligned} & -{{y}_{1}}=\dfrac{-4m{{y}_{1}}}{n{{x}_{1}}}\left( x-{{x}_{1}} \right) \\\ & \Rightarrow n{{x}_{1}}=4m\left( x-{{x}_{1}} \right) \\\ \end{aligned}
Dividing both sides by 4m, we get
xx1=nx14mx-{{x}_{1}}=\dfrac{n{{x}_{1}}}{4m}
Adding x1{{x}_{1}} on both sides, we get
x=n+4m4mx1x=\dfrac{n+4m}{4m}{{x}_{1}}
At point B, we have x=0.
Hence, we have
yy1=4my1nx1(x1)=4my1ny-{{y}_{1}}=\dfrac{-4m{{y}_{1}}}{n{{x}_{1}}}\left( -{{x}_{1}} \right)=\dfrac{4m{{y}_{1}}}{n}
Adding y1{{y}_{1}} on both sides of the equation, we get
y=(4mn+1)y1=4m+nny1y=\left( \dfrac{4m}{n}+1 \right){{y}_{1}}=\dfrac{4m+n}{n}{{y}_{1}}
Let P divides AB in the ratio of k:1k:1
Hence, we have
P(k×0+4m+n4mx1k+1,k×4m+nny1k+1)P\equiv \left( \dfrac{k\times 0+\dfrac{4m+n}{4m}{{x}_{1}}}{k+1},\dfrac{k\times \dfrac{4m+n}{n}{{y}_{1}}}{k+1} \right)
But  P(x1,y1)\text{ }P\equiv \left({{ x }_{1}},{{y}_{1}} \right)
Hence, we have
4m+n4m(k+1)=1\dfrac{4m+n}{4m\left( k+1 \right)}=1
Multiplying both sides by k+1, we get
k+1=4m+n4mk+1=\dfrac{4m+n}{4m}
Subtracting 1 from both sides, we get
k=4m+n4m1=n4mk=\dfrac{4m+n}{4m}-1=\dfrac{n}{4m}
Hence the ratio in which P divides AB is n4m\dfrac{n}{4m}
Hence λ=4\lambda =4
Hence option [a] is correct

So, the correct answer is “Option [a]”.

Note: Alternative Method: Best method
Equation of the tangent at point P(x,y)P\left( x,y \right) is given by
Yy=dydx(Xx)Y-y=\dfrac{dy}{dx}\left( X-x \right)
At point A, we have Y = 0
Hence y=dydx(Xx)-y=\dfrac{dy}{dx}\left( X-x \right)
Hence, we have
X=x+ydydxX=x+\dfrac{-y}{\dfrac{dy}{dx}}
Since P divides AB in the ratio nλm\dfrac{n}{\lambda m}, we have
x=λm(xydydx)n+λmx=\dfrac{\lambda m\left( x-\dfrac{y}{\dfrac{dy}{dx}} \right)}{n+\lambda m}
Multiplying both sides by n+λmn+\lambda m, we get
(n+λm)x=λm(xydydx)\left( n+\lambda m \right)x=\lambda m\left( x-\dfrac{y}{\dfrac{dy}{dx}} \right)
Dividing both sides byλm\lambda m , we get
n+λmλmx=xydydx\dfrac{n+\lambda m}{\lambda m}x=x-\dfrac{y}{\dfrac{dy}{dx}}
Subtracting x from both sides, we get
nλmx=ydydx nλmx=ydxdy dyy=λmndxx \begin{aligned} & \dfrac{n}{\lambda m}x=-\dfrac{y}{\dfrac{dy}{dx}} \\\ & \Rightarrow \dfrac{n}{\lambda m}x=-y\dfrac{dx}{dy} \\\ & \Rightarrow \dfrac{dy}{y}=-\dfrac{\lambda m}{n}\dfrac{dx}{x} \\\ \end{aligned}
Integrating both sides, we get
logy=λmnlogx+logC\log y=-\dfrac{\lambda m}{n}\log x+\log C
Hence, we have
log(yxλmn)=logC\log \left( y{{x}^{\dfrac{\lambda m}{n}}} \right)=\log C
Hence, we have
yxλmn=Cy{{x}^{\dfrac{\lambda m}{n}}}=C
Raising power to n2\dfrac{n}{2} on both sides of the equation, we get
yn2xλm2=Cn2=C{{y}^{\dfrac{n}{2}}}{{x}^{\dfrac{\lambda m}{2}}}={{C}^{\dfrac{n}{2}}}=C'
Comparing the equation, with the given equation, we get
λ2=2 λ=4 \begin{aligned} & \dfrac{\lambda }{2}=2 \\\ & \Rightarrow \lambda =4 \\\ \end{aligned}
Hence, the value of λ\lambda is 4