Solveeit Logo

Question

Mathematics Question on Functions

Let the sum of the maximum and the minimum values of the function f(x)=2x23x+82x2+3x+8f(x) = \frac{2x^2 - 3x + 8}{2x^2 + 3x + 8} be mn\frac{m}{n}, where gcd(m,n)=1\text{gcd}(m, n) = 1. Then m+nm + n is equal to:

A

182

B

217

C

195

D

201

Answer

201

Explanation

Solution

Analyze the function f(x)=2x23x+82x2+3x+8f(x) = \frac{2x^2 - 3x + 8}{2x^2 + 3x + 8}.

To find the maximum and minimum values, let y=2x23x+82x2+3x+8y = \frac{2x^2 - 3x + 8}{2x^2 + 3x + 8}.

Multiply both sides by the denominator to rewrite this as:
y(2x2+3x+8)=2x23x+8y(2x^2 + 3x + 8) = 2x^2 - 3x + 8

Expanding and rearranging terms, we get:
2x2y+3xy+8y=2x23x+82x^2y + 3xy + 8y = 2x^2 - 3x + 8
2x2(y1)+x(3y+3)+8(y1)=02x^2(y - 1) + x(3y + 3) + 8(y - 1) = 0

This is a quadratic equation in xx. For real values of xx, the discriminant DD must satisfy D0D \geq 0.
Using the Discriminant Condition D0D \geq 0:

For the quadratic equation 2x2(y1)+x(3y+3)+8(y1)=02x^2(y - 1) + x(3y + 3) + 8(y - 1) = 0, calculate the discriminant DD:
D=(3y+3)24×2(y1)×8(y1)D = (3y + 3)^2 - 4 \times 2(y - 1) \times 8(y - 1)

**Simplifying this inequality yields: **

y[511,1]y \in \left[\frac{5}{11}, 1\right]

Therefore, the minimum value of yy is 511\frac{5}{11}, and the maximum value of yy is 11.
Sum of Maximum and Minimum Values: 511+1=511+1111=14655\frac{5}{11} + 1 = \frac{5}{11} + \frac{11}{11} = \frac{146}{55}
Thus, m=146m = 146 and n=55n = 55, so m+n=146+55=201m + n = 146 + 55 = 201.